51人阅读 评论(0)

# 1029. Median (25)

1000 ms

65536 kB

16000 B

Standard

CHEN, Yue

Given an increasing sequence S of N integers, the median is the number at the middle position. For example, the median of S1={11, 12, 13, 14} is 12, and the median of S2={9, 10, 15, 16, 17} is 15. The median of two sequences is defined to be the median of the nondecreasing sequence which contains all the elements of both sequences. For example, the median of S1 and S2 is 13.

Given two increasing sequences of integers, you are asked to find their median.

Input

Each input file contains one test case. Each case occupies 2 lines, each gives the information of a sequence. For each sequence, the first positive integer N (<=1000000) is the size of that sequence. Then N integers follow, separated by a space. It is guaranteed that all the integers are in the range of long int.

Output

For each test case you should output the median of the two given sequences in a line.

Sample Input
4 11 12 13 14
5 9 10 15 16 17

Sample Output
13

#include<stdio.h>

int num[2][1000000];
int all[2000000];

int main(){
int i, j, n1, n2, a;
scanf("%d", &n1);
for (i = 0; i < n1; i++)
scanf("%d", &num[0][i]);
scanf("%d", &n2);
for (i = 0; i < n2; i++)
scanf("%d", &num[1][i]);
i = j = a = 0;
while (i < n1 && j < n2){
if (num[0][i] < num[1][j])
all[a++] = num[0][i++];
else
all[a++] = num[1][j++];
}
while (i < n1)
all[a++] = num[0][i++];
while (j < n2)
all[a++] = num[1][j++];

printf("%d\n",all[(n1+n2-1)/2]);
return 0;
}
0
0

* 以上用户言论只代表其个人观点，不代表CSDN网站的观点或立场
个人资料
• 访问：6416次
• 积分：520
• 等级：
• 排名：千里之外
• 原创：47篇
• 转载：3篇
• 译文：0篇
• 评论：2条
阅读排行
最新评论