1、无穷序列:若一个序列u1,u2,u3…对于任意一个整数ε(注:可无限小) ,都存在当n>N时,都有|u1-k|<ε,则称k为序列{ui}的极限。如果一个序列的极限存在,我们称其为收敛的,否则序列是发散的。如序列{1,2,3,4,5…}是发散的,序列1,1.1,1.11,1.111,1.1111…时收敛的,序列1,-1,1,-1,1,-1…也是收敛的。
2、
设是一个无穷序列 :
,其前n项的和称为
的部分和:
部分和依次构成另一个无穷序列:
这两个序列合称为一个级数,记作或者
,其中
符號為求和号。
3、柯西收敛准则:对于一个序列{un},对于任意的正数ε,若存在一个N,当p,q>N时,都有|up-uq| < ε,则这个序列是收敛的。