经典算法之HOG特征描述符

本文介绍了HOG(Histograms of Oriented Gradients)算法的基础原理,用于行人检测。HOG通过图像Block分割、统计加权直方图、直方图级联等步骤提取特征。在Block内,将图像划分为Cell并计算梯度,使用三线性插值计算加权直方图,最后级联Cell和Block的直方图形成高维特征向量,可作为分类器如SVM的输入。后续研究针对HOG的尺度不变性和计算效率进行了改进。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

    2005年Dalal等在CVPR上发表了一篇文《Histograms of Oriented Gradients for Human Detection》,提出了HOG(Histograms of Oriented Gradients)的基本算法,用于行人检测。自此,许多基于HOG的算法相继提出,用以提高HOG的性能和速度。本文对HOG的基本原理做一简单介绍。HOG的基本思想就是对检测窗口(在图像中滑动)进行分割以形成Block和Cell,然后计算每个像素的梯度(包括方向和幅值),利用以Block为单位统计每个Cell的加权直方图,最后将各个Cell和Block内的直方图进行级联形成HOG描述符。主要步骤如图1所示:


                                                                              图1 HOG提取示意图

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值