1.一维数点:
每次询问val<=q的有多少个。
1)按照val排序然后二分。
2)树状数组
2.二维数点:
每次询问ai<=x && bi<=y的有多少个。
1)树状数组+线段树等
2)按照ai排序后二分,找到位置后再次进行二分。
3)扫描线+Bit:
对ai进行排序,把所有的点加入到(维护y的)树状数组中。
对询问的x进行排序,并从树状数组中删除x >= cur的点。
同时用这个树状数组去查询y。
3.三维数点:
每次询问ai<=x && bi<=y && ci<=z的有多少个。
1)三维数据结构(MLE)
2)三个二分
3)扫描线+二维数据结构。
可持久化线段树解决区间第k大(本质上是二维数点问题)
我们可以把询问按照左端点排序,用线段树维护权值。
左侧的指针l每向右挪动1位,就从线段树删除一个值的信息。
然后二分权值就能知道第k大是什么值了。
例题:
3236: [Ahoi2013]作业
每次询问:[l,r]内权值在[a,b]之间的数的个数和数值的个数。
数的个数用主席树随便维护下就行了,现在来看数值的个数。
我们发现把第i个数可以看作一个
那么我们要询问的是:
1.a<=vali<=b,l<=i<=r
2.a<=vali<=b,l<=i<=r,prei<l
这样的话我们就把询问离线,按照询问的左端点排序。
然后用一个二维数据结构来维护a<=vali<=b和prei<l约束就行了。
本文详细介绍了在一维、二维及三维场景下的数点问题解决方法,包括使用排序、二分查找、树状数组、线段树等数据结构,以及如何通过扫描线算法和可持久化数据结构优化查询效率。
2531

被折叠的 条评论
为什么被折叠?



