关闭

求二元一次方程的根(浮点数输出)

标签: c语言
498人阅读 评论(0) 收藏 举报
分类:

描述
利用公式x1 = (-b + sqrt(b*b-4*a*c))/(2*a), x2 = (-b - sqrt(b*b-4*a*c))/(2*a)求一元二次方程ax2+ bx + c =0的根,其中a不等于0。

输入
输入一行,包含三个浮点数a, b, c(它们之间以一个空格分开),分别表示方程ax2 + bx + c =0的系数。
输出
输出一行,表示方程的解。
若两个实根相等,则输出形式为:x1=x2=…。
若两个实根不等,则输出形式为:x1=…;x2 = …,其中x1若是两个虚根,则输出:x1=实部+虚部i; x2=实部-虚部i,其中x1,x2满足以下两个条件中的一个:
1. x1的实部大于x2的实部
2. x1的实部等于x2的实部且x1的虚部大于等于x2的虚部

所有实数部分要求精确到小数点后5位,数字、符号之间没有空格。
样例输入
1.0 2.0 8.0
样例输出
x1=-1.00000+2.64575i;x2=-1.00000-2.64575i

这题体验了一把迷之浮点数。
开始wa了一发是因为答案可能输出-0.00000 这种东西,但这是不合法的。于是需要在每一个需要输出的前面判断一下输出的浮点数是否为0,如果为0 需要取一个fabs。

#include <cstdio>
#include <iostream>
#include <cmath>
#include <algorithm>
using namespace std;
#define ll long long 
int main()
{
    freopen("in.txt","r",stdin);
    double y;char ch;
    double a,b,c;
    scanf("%lf %lf %lf",&a,&b,&c);
    double dt=b*b-4*a*c;
    if(dt==0) 
    {
        double x1=-b/(2*a);
        if (x1==0) x1=fabs(x1);
        printf("x1=x2=%.5f\n",x1);
        return 0;
    }
    if(dt>0)
    {   double x1=(-b + sqrt(dt))/(2*a),x2=(-b - sqrt(dt))/(2*a);
        if(x1==0) x1=fabs(x1);
        if(x2==0) x2=fabs(x2);
        printf("x1=%.5f;x2=%.5f\n", x1,x2);
    }
    else 
    {
        double x=sqrt(fabs(dt))/(2*a);
        double y=-b/(2*a);
        if(y==0) y=fabs(y);

        printf("x1=%.5f+%.5fi;x2=%.5f-%.5fi\n",y,x,y,x);
    }
    return 0;
}
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:13451次
    • 积分:719
    • 等级:
    • 排名:千里之外
    • 原创:61篇
    • 转载:0篇
    • 译文:0篇
    • 评论:5条
    最新评论