关闭

Seminar《Fast Random Walk with Restart and Its Applications》

标签: randomwalkdiffusionseminar
548人阅读 评论(0) 收藏 举报
分类:

Reference

概述

  • 一句话描述:
    Optima the RWR of computing relevance of two nodes in a graph or manifold.
  • Traditional: storage and time cost
    On the fly vs preCompute
  • Proposal: balance between them.

具体

将大矩阵逆的求解转化为小矩阵逆的求解,利用图结构的linear correlations 和 block wise, community-like structure。
大概分为以下几步:
1. 矩阵的Normalization,将相似度转化为概率
row-norm
normalized graph Lapalician–效果会有提升
2. Partition
使用别人的方法
3. Low-rank approximation on W ˜ 2
低秩逼近,典型方法有两种,本文是自己提出的一种方法。
eigen-value decomposition: lose the sparsity and time-consuming
singular vector decomposition
propose the following heuristic to do low-rank approximation(不是很懂啊)

Figures

Main Contribution
Online operation
The Maxwell Equation

Some questions

有待解决的问题:
1. 低阶矩阵近似,这个理论不是很懂
2. 虽然被评为2015ICDM10年最高引用,但是后续工作究竟如何?
3. 具体应用例子,作为diffusion的解法,究竟是否有进一步应用?
4. 本文实际提供的是一种求大矩阵逆的近似解法,与其他求逆矩阵的优化方法有何不同?
5. 既然是求逆矩阵,那么当对于图像检索问题,当query不是database中的元素时,offline求逆运算就没有任何意义了。只能采用迭代求解的方法。

1
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:15766次
    • 积分:380
    • 等级:
    • 排名:千里之外
    • 原创:14篇
    • 转载:1篇
    • 译文:0篇
    • 评论:0条