题目概述
求两个字符串 AA 和 的最长公共子序列以及最长公共子序列的数量。
解题报告
定义 f[i][j]f[i][j] 表示 AA 的前 位与 BB 的前 位的最长公共子序列,g[i][j]g[i][j] 表示最长公共子序列的方案数。第一问没话说,第二问要注意重复的情况:
当 Ai=BjAi=Bj 时,直接从三个状态转移,累加方案数。
当 Ai≠BjAi≠Bj 时,从 f[i][j−1]f[i][j−1] 和 f[i−1][j]f[i−1][j] 转移,如果 f[i−1][j−1]=f[i][j−1]=f[i−1][j]f[i−1][j−1]=f[i][j−1]=f[i−1][j] ,那么说明 g[i−1][j−1]g[i−1][j−1] 算重复了 11 次,减去。
注意会MLE(别问我为什么知道QAQ),所以用滚动数组。
示例程序
#include<cstdio>
#include<cstring>
using namespace std;
const int maxn=5000,maxm=5000,MOD=100000000;
int n,m,f[2][maxm+5],g[2][maxm+5];char A[maxn+5],B[maxm+5];
inline void AMOD(int &x,int tem) {if ((x+=tem)>=MOD) x-=MOD;}
inline void Fix(int &f,int &g,int a,int b) {if (f==a) return AMOD(g,b);if (a>f) f=a,g=b;}
int main(){
freopen("program.in","r",stdin);
freopen("program.out","w",stdout);
scanf("%s%s",A+1,B+1);n=strlen(A+1)-1;m=strlen(B+1)-1;
for (int j=0;j<=m;j++) g[0][j]=1;
for (int i=1,c=1;i<=n;i++,c^=1){
memset(f[c],0,sizeof(f[c]));memset(g[c],0,sizeof(g[c]));g[c][0]=1;
for (int j=1;j<=m;j++){
Fix(f[c][j],g[c][j],f[c^1][j],g[c^1][j]);
Fix(f[c][j],g[c][j],f[c][j-1],g[c][j-1]);
if (A[i]==B[j]) Fix(f[c][j],g[c][j],f[c^1][j-1]+1,g[c^1][j-1]); else
if (f[c^1][j-1]==f[c^1][j]&&f[c^1][j-1]==f[c][j-1]) AMOD(g[c][j],MOD-g[c^1][j-1]);
}
}
return printf("%d\n%d\n",f[n&1][m],g[n&1][m]),0;
}