Design Pattern 16-Facade

using System;

namespace Pattern
{
 /// <summary>
 /// Summary description for Class1.
 /// </summary>
 /*

 假设你有三个播音设备.分别使CD 磁带机,Mp3 它们分别有自己独立的操作放案.这让你很头痛

 因为你必须掌握三套类似却有相对独立的方案.那么我们考虑如何解决*/

 public class CDPlay
 {
  private  string SongName;
  public CDPlay(string sn)
  {
   SongName=sn;
  }

  public void PlayCd()
  {
   Console.WriteLine("Play Cd" + SongName);
  }
 
  public void StopCd()
  {
   Console.WriteLine("Stop Cd");
  }

 }

 public class RecordPlay
 {
  private  string SongName;
  public RecordPlay(string sn)
  {
   SongName=sn;
  }

  public void PlayRecord()
  {
   Console.WriteLine("Play Record" + SongName);
  }
 
  public void StopRecord()
  {
   Console.WriteLine("Stop Record");
  }
 }

 public class Mp3Play
 {
  private  string SongName;
  public Mp3Play(string sn)
  {
   SongName=sn;
  }

  public void PlayMp3()
  {
   Console.WriteLine("Play Mp3" + SongName);
  }
 
  public void StopMp3()
  {
   Console.WriteLine("Stop Mp3");
  }
 }

 

 //下面我们建立统一的界面

 public class Facade
 {
  private Mp3Play mp3;
  private RecordPlay rd;
  private CDPlay cd;
 
  private string playName;
  private  string songName;

  public string PlayName
  {
   get{return playName;}
   set{playName=value;}
  }
 
  public string SongName
  {
   get{return SongName;}
   set{SongName=value;}
  }

  public Facade(string pn,string sn)
  {
   playName=pn;
   songName=sn;
  }
 
  public void play()
  {
   switch(playName)
   {
    case "CD":
     cd=new CDPlay(songName);
     cd.PlayCd();
     break;
    case "mp3":
     mp3=new Mp3Play(songName);
     mp3.PlayMp3();
     break;
    case "Record":
     rd=new RecordPlay(songName);
     rd.PlayRecord();
     break;
   }
  }
 
  public void stop()
  {
   switch(playName)
   {
    case "CD":
     cd=new CDPlay(songName);
     cd.StopCd();
     break;
    case "mp3":
     mp3=new Mp3Play(songName);
     mp3.StopMp3();
     break;
    case "Record":
     rd=new RecordPlay(songName);
     rd.StopRecord();
     break;
   }
  
  }
 }

}
   //门面模式
   Facade facade = new Facade("CD","aaaa");
   facade.play();
   facade.stop ();

   facade.PlayName="mp3";
   facade.play();
   facade.stop();

   facade.PlayName="Record";
   facade.play();
   facade.stop();

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值