函数、极限与连续

函数、极限与连续

映射:又称为算子,一个非空集合 X 的元素按某种法则 f 与另一个非空集合 Y 的元素对应。

在映射 f 下,y称为x的,x称为y的原像。集合X称为定义域Df,定义域的元素的像的集合称为值域Rf

也就是说, R f ⊂ Y R_f \subset Y RfY

映射分为以下三种:

  • 单射:一个x对应一个y;
  • 满射:Y中任意元素在X中都有对应的像;
  • 双射:既是单射也是满射。

🚩相关知识点🚩

只有单射才有逆映射

复合映射 ( g ∘ f ) ( x ) (g \circ f)(x) (gf)(x),g的值域必须包含在f的定义域内,也就是说g、f的顺序是有意义的。

函数:y=f(x)。函数关系中的原像称为自变量,像称为因变量

记号f表示x、y之间的映射法则,f(x)表示x对应的函数值。

子集:A是B的子集,记作 A ⊂ B A \subset B AB A ⊃ B A \supset B AB(A包含于B,B包含A)。

自然数集 N、整数集 Z、有理数集 Q、实数集 R, N ⊂ Z ⊂ Q ⊂ R N \subset Z \subset Q \subset R NZQR

集合的交差并补:
A ∩ B , A ∖ B , A ∪ B , C U A 或 A C A \cap B ,A \setminus B ,A \cup B ,C_UA或A^C AB,AB,AB,CUAAC

补集的对偶性
( A ∪ B ) C = A C ∩ B C ( A ∩ B ) C = A C ∪ B C (A \cup B)^C = A^C \cap B^C \\ (A \cap B)^C = A^C \cup B^C (AB)C=ACBC(AB)C=ACBC

基本初等函数

🐱幂函数: y = x α y=x^ \alpha y=xα α 是常数 \alpha 是常数 α是常数

🐱指数函数: y = a x y=a^x y=ax a > 0 , a ≠ 1 a > 0 ,a \ne 1 a>0,a=1

🐱对数函数: y = l o g a x y=log_ax y=logax a > 0 , a ≠ 1 a > 0 ,a \ne 1 a>0,a=1

常用对数等式
x = e l n x x a = e a l n x x = e^{ln x}\\ x^a=e^{alnx} x=elnxxa=ealnx

🐱三角函数:

y=tan x的定义域是 { x ∣ x ≠ π 2 + k π , k = 0 , ± 1 , ± 2... } \{x|x \ne \frac{\pi}{2} + k \pi,k=0,\pm 1,\pm 2 ... \} {xx=2π+k=0±1±2...},值域是 ( − ∞ , + ∞ ) (- \infty,+ \infty) (,+),最小正周期是 π \pi π,奇函数。

y=cot x的定义域是 { x ∣ x ≠ k π , k = 0 , ± 1 , ± 2... } \{x|x \ne k \pi,k=0,\pm 1,\pm 2 ...\} {xx=k=0±1±2...},值域是 ( − ∞ , + ∞ ) (- \infty,+ \infty) (,+),最小正周期是 π \pi π,奇函数。

image

🐱反三角函数:

y=arcsinx的定义域是 [ − 1 , 1 ] [-1,1] [11],值域是 [ − π 2 , π 2 ] [-\frac{\pi}{2},\frac{\pi}{2}] [2π2π],称为反正弦函数。

y=arccosx的定义域是 [ − 1 , 1 ] [-1,1] [11],值域是 [ 0 , π ] [0,\pi] [0,π],称为反余弦函数。

image

y=arctanx的定义域是 ( − ∞ , ∞ ) (-\infty,\infty) (,),值域是 ( − π 2 , π 2 ) (-\frac{\pi}{2},\frac{\pi}{2}) (2π2π),成为反正切函数。

y=arccotx的定义域是 ( − ∞ , ∞ ) (-\infty,\infty) (,),值域是 ( 0 , π ) (0,\pi) (0π),成为反余切函数。

image

还有特殊函数如常数函数、绝对值函数符号函数取整函数

数列极限

{ x n } \{x_n\} {xn}是一数列,如果存在某个常数 a ∈ R a \in R aR,对于任意给定的正数 ϵ \epsilon ϵ,总存在一个正整数N,使得对于 n > N n > N n>N时一切n,不等式 ∣ x n − a ∣ < ϵ |x_n - a|<\epsilon xna<ϵ,则称常数a是数列 { x n } \{x_n\} {xn}的极限,或者称 { x n } \{x_n\} {xn}收敛于a,记作
lim ⁡ n → ∞ x n = a 或 x n → a ( n → ∞ ) \lim\limits_{\substack{n \to \infty}}{x_n}=a或x_n \to a(n \to \infty) nlimxn=axna(n)
如果这样的a不存在,则称数列没有极限或发散
使用简洁语言表示就是:如果 ∀ ϵ > 0 , ∃ N ∈ Z + ,当 n > N 时,恒有 ∣ x n − a ∣ < ϵ \forall \epsilon >0,\exists N \in Z^+,当n>N时,恒有|x_n -a |<\epsilon ϵ>0NZ+,当n>N时,恒有xna<ϵ,则 lim ⁡ n → ∞ x n = a \lim\limits_{\substack{n \to \infty}}{x_n}=a nlimxn=a

数列极限运算法则( lim ⁡ n → ∞ x n = a \lim\limits_{\substack{n\to \infty}}{x_n}=a nlimxn=a lim ⁡ n → ∞ y n = b \lim\limits_{\substack{n\to \infty}}{y_n}=b nlimyn=b):

  • 加减: lim ⁡ n → ∞ ( x n ± y n ) = lim ⁡ n → ∞ x n ± lim ⁡ n → ∞ y n = a ± b \lim\limits_{\substack{n\to \infty}}{(x_n\pm y_n)}=\lim\limits_{\substack{n\to \infty}}{x_n}\pm \lim\limits_{\substack{n\to \infty}}{y_n}=a\pm b nlim(xn±yn)=nlimxn±nlimyn=a±b
  • 乘法: lim ⁡ n → ∞ x n ⋅ y n = lim ⁡ n → ∞ x n ⋅ y n = a ⋅ b \lim\limits_{\substack{n\to \infty}}{x_n}\cdot y_n=\lim\limits_{\substack{n\to \infty}}{x_n}\cdot {y_n}=a \cdot b nlimxnyn=nlimxnyn=ab
  • 交换: lim ⁡ n → ∞ x n = lim ⁡ n → ∞ x n = a \lim\limits_{\substack{n\to \infty}}{\sqrt{x_n}}=\sqrt{\lim\limits_{\substack{n\to \infty}}{x_n}}=\sqrt{a} nlimxn =nlimxn =a
  • 除法: lim ⁡ n → ∞ x n y n = lim ⁡ n → ∞ x n lim ⁡ n → ∞ y n = a b \lim\limits_{\substack{n\to \infty}}{\frac{x_n}{y_n}}=\frac{\lim\limits_{\substack{n \to \infty}}{x_n}}{\lim\limits_{\substack{n\to \infty}}{y_n}}=\frac{a}{b} nlimynxn=nlimynnlimxn=ba

函数极限

趋于无穷大的极限:如果 ∀ ϵ > 0 , ∃ X > 0 ,当 x > X 时,恒有 ∣ f ( x ) − A ∣ < ϵ \forall \epsilon >0,\exists X > 0,当x>X时,恒有|f(x) - A |<\epsilon ϵ>0X>0,当x>X时,恒有f(x)A<ϵ,则 lim ⁡ x → + ∞ f ( x ) = A \lim\limits_{\substack{x \to +\infty}}{f(x)}=A x+limf(x)=A

趋于某个点的极限: ∀ ϵ > 0 , ∃ δ > 0 , 当 0 < ∣ x − x 0 ∣ < δ 时,恒有 ∣ f ( x ) − A ∣ < ϵ ,那么 lim ⁡ x → x 0 f ( x ) = A \forall \epsilon>0,\exists \delta>0,当0<|x-x_0|<\delta时,恒有|f(x)-A|<\epsilon,那么\lim\limits_{\substack{x \to x_0}}{f(x)}=A ϵ>0δ>0,0<xx0<δ时,恒有f(x)A<ϵ,那么xx0limf(x)=A

函数极限的运算与数列极限的运算类似,都有加减乘除、交换,此外还有以下法则;

  • lim ⁡ x → x 0 [ α f ( x ) + β g ( x ) ] = α lim ⁡ x → x 0 f ( x ) + β lim ⁡ x → x 0 g ( x ) \lim\limits_{\substack{x\to x_0}}{[\alpha f(x)+ \beta g(x)]}=\alpha \lim\limits_{\substack{x\to x_0}}{f(x)} + \beta \lim\limits_{\substack{x\to x_0}}{g(x)} xx0lim[αf(x)+βg(x)]=αxx0limf(x)+βxx0limg(x)
  • lim ⁡ x → x 0 [ f ( x ) ] n = [ lim ⁡ x → x 0 f ( x ) ] n \lim\limits_{\substack{x\to x_0}}{[f(x)]^n}=[\lim\limits_{\substack{x\to x_0}}{f(x)}]^n xx0lim[f(x)]n=[xx0limf(x)]n

复合函数的极限运算法则

  • lim ⁡ x → x 0 f [ g ( x ) ] = lim ⁡ x → x 0 f [ u ] = lim ⁡ u → u 0 f ( u ) = f ( u 0 ) \lim\limits_{\substack{x\to x_0}}{f[g(x)]}=\lim\limits_{\substack{x\to x_0}}{f[u]}=\lim\limits_{\substack{u\to u_0}}{f(u)}=f(u_0) xx0limf[g(x)]=xx0limf[u]=uu0limf(u)=f(u0)

数列极限的性质

  • 数列极限的唯一性:如果 { x n } \{x_n\} {xn}收敛,则极限唯一。
  • 数列极限的有界性:如果 { x n } \{x_n\} {xn}收敛,则 { x n } \{x_n\} {xn}有界。
  • 数列极限的保号性:如果 { x n } \{x_n\} {xn}收敛于a,则从某项起 { x n } \{x_n\} {xn}与a同号。
  • 推论:如果 { x n } \{x_n\} {xn}收敛于a,则 { x n } \{x_n\} {xn}的任意子列也收敛于a。

函数极限的性质

  • 函数极限的唯一性:如果 lim ⁡ x → x 0 f ( x ) = A \lim\limits_{\substack{x\to x_0}}{f(x)}=A xx0limf(x)=A lim ⁡ x → x 0 f ( x ) = B \lim\limits_{\substack{x\to x_0}}{f(x)}=B xx0limf(x)=B,则A=B。
  • 函数极限的局部有界性:如果 lim ⁡ x → x 0 f ( x ) = A \lim\limits_{\substack{x\to x_0}}{f(x)}=A xx0limf(x)=A,则存在 δ > 0 \delta>0 δ>0,使得当 0 < ∣ x − x 0 ∣ < δ 0<|x-x_0|<\delta 0<xx0<δ时, ∣ f ( x ) ∣ < M |f(x)|<M f(x)<M
  • 函数极限的局部保号性:如果 lim ⁡ x → x 0 f ( x ) = A \lim\limits_{\substack{x \to x_0}} f(x) = A xx0limf(x)=A,且A>0,则存在 δ > 0 \delta>0 δ>0,使得当 0 < ∣ x − x 0 ∣ < δ 0<|x-x_0|<\delta 0<xx0<δ时, f ( x ) > 0 f(x)>0 f(x)>0
  • 函数极限的局部保号性的反推:如果存在 δ > 0 \delta>0 δ>0,使得当 0 < ∣ x − x 0 ∣ < δ 0<|x-x_0|<\delta 0<xx0<δ时, f ( x ) > 0 f(x)>0 f(x)>0,则 lim ⁡ x → x 0 f ( x ) ≥ 0 \lim\limits_{\substack{x\to x_0}}{f(x)}\geq 0 xx0limf(x)0
  • 函数极限的局部保号性的大于|A|/2的推论:如果 lim ⁡ x → x 0 f ( x ) = A ( A ≠ 0 ) \lim\limits_{\substack{x \to x_0}}f(x)=A(A \ne 0) xx0limf(x)=A(A=0),则存在 δ > 0 \delta>0 δ>0,使得当 0 < ∣ x − x 0 ∣ < δ 0<|x-x_0|<\delta 0<xx0<δ时, ∣ f ( x ) ∣ > ∣ A ∣ 2 |f(x)|>\frac{|A|}{2} f(x)>2A
  • 函数极限与数列极限的关系:如果 lim ⁡ x → x 0 f ( x ) = A \lim\limits_{\substack{x\to x_0}}{f(x)}=A xx0limf(x)=A,则对于任意收敛于 x 0 x_0 x0的数列 { x n } \{x_n\} {xn},有 lim ⁡ n → ∞ f ( x n ) = A \lim\limits_{\substack{n\to \infty}}{f(x_n)}=A nlimf(xn)=A

两个重要极限

  • lim ⁡ x → 0 s i n x x = 1 \lim\limits_{\substack{x\to 0}}{\frac{sinx}{x}}=1 x0limxsinx=1
  • lim ⁡ x → ∞ ( 1 + 1 x ) x = e \lim\limits_{\substack{x\to \infty}}{(1+\frac{1}{x})^x}=e xlim(1+x1)x=e

洛必达法则

如果:

  1. lim ⁡ x → x 0 f ( x ) = 0 \lim\limits_{\substack{x\to x_0}}{f(x)}=0 xx0limf(x)=0 lim ⁡ x → x 0 g ( x ) = 0 \lim\limits_{\substack{x\to x_0}}{g(x)}=0 xx0limg(x)=0,或者 lim ⁡ x → x 0 f ( x ) = ∞ \lim\limits_{\substack{x\to x_0}}{f(x)}=\infty xx0limf(x)= lim ⁡ x → x 0 g ( x ) = ∞ \lim\limits_{\substack{x\to x_0}}{g(x)}=\infty xx0limg(x)=
  2. lim ⁡ x → x 0 f ( x ) \lim\limits_{\substack{x\to x_0}}{f(x)} xx0limf(x) lim ⁡ x → x 0 g ( x ) \lim\limits_{\substack{x\to x_0}}{g(x)} xx0limg(x)可导,且 g ′ ( x ) ≠ 0 g'(x)\ne 0 g(x)=0
  3. lim ⁡ x → x 0 f ′ ( x ) g ′ ( x ) \lim\limits_{\substack{x\to x_0}}{\frac{f'(x)}{g'(x)}} xx0limg(x)f(x)存在或为 ∞ \infty

则:

lim ⁡ x → x 0 f ( x ) g ( x ) = lim ⁡ x → x 0 f ′ ( x ) g ′ ( x ) \lim\limits_{\substack{x\to x_0}}{\frac{f(x)}{g(x)}}=\lim\limits_{\substack{x\to x_0}}{\frac{f'(x)}{g'(x)}} xx0limg(x)f(x)=xx0limg(x)f(x)

但是要注意,洛必达法则只是一个充分条件,不是一个必要条件,即如果极限存在,那么洛必达法则一定成立,但是如果洛必达法则成立,极限不一定存在。

三角函数的相关公式和二项式定理

  • s i n 2 x + c o s 2 x = 1 sin^2x+cos^2x=1 sin2x+cos2x=1
  • s i n ( x ± y ) = s i n x c o s y ± c o s x s i n y sin(x\pm y)=sinxcosy\pm cosxsiny sin(x±y)=sinxcosy±cosxsiny
  • c o s ( x ± y ) = c o s x c o s y ∓ s i n x s i n y cos(x\pm y)=cosxcosy\mp sinxsiny cos(x±y)=cosxcosysinxsiny
  • s i n 2 x = 2 s i n x c o s x sin2x=2sinxcosx sin2x=2sinxcosx
  • c o s 2 x = c o s 2 x − s i n 2 x = 2 c o s 2 x − 1 = 1 − 2 s i n 2 x cos2x=cos^2x-sin^2x=2cos^2x-1=1-2sin^2x cos2x=cos2xsin2x=2cos2x1=12sin2x
  • s i n 3 x = 3 s i n x − 4 s i n 3 x sin3x=3sinx-4sin^3x sin3x=3sinx4sin3x
  • c o s 3 x = 4 c o s 3 x − 3 c o s x cos3x=4cos^3x-3cosx cos3x=4cos3x3cosx
  • s i n x + s i n y = 2 s i n x + y 2 c o s x − y 2 sinx+siny=2sin\frac{x+y}{2}cos\frac{x-y}{2} sinx+siny=2sin2x+ycos2xy
  • s i n x − s i n y = 2 c o s x + y 2 s i n x − y 2 sinx-siny=2cos\frac{x+y}{2}sin\frac{x-y}{2} sinxsiny=2cos2x+ysin2xy
  • c o s x + c o s y = 2 c o s x + y 2 c o s x − y 2 cosx+cosy=2cos\frac{x+y}{2}cos\frac{x-y}{2} cosx+cosy=2cos2x+ycos2xy
  • c o s x − c o s y = − 2 s i n x + y 2 s i n x − y 2 cosx-cosy=-2sin\frac{x+y}{2}sin\frac{x-y}{2} cosxcosy=2sin2x+ysin2xy
  • s i n x s i n y = 1 2 [ c o s ( x − y ) − c o s ( x + y ) ] sinxsiny=\frac{1}{2}[cos(x-y)-cos(x+y)] sinxsiny=21[cos(xy)cos(x+y)]
  • c o s x c o s y = 1 2 [ c o s ( x − y ) + c o s ( x + y ) ] cosxcosy=\frac{1}{2}[cos(x-y)+cos(x+y)] cosxcosy=21[cos(xy)+cos(x+y)]
  • s i n x c o s y = 1 2 [ s i n ( x + y ) + s i n ( x − y ) ] sinxcosy=\frac{1}{2}[sin(x+y)+sin(x-y)] sinxcosy=21[sin(x+y)+sin(xy)]
  • s i n 2 x = 1 2 [ 1 − c o s 2 x ] sin^2x=\frac{1}{2}[1-cos2x] sin2x=21[1cos2x]
  • c o s 2 x = 1 2 [ 1 + c o s 2 x ] cos^2x=\frac{1}{2}[1+cos2x] cos2x=21[1+cos2x]
  • t a n ( x ± y ) = t a n x ± t a n y 1 ∓ t a n x t a n y tan(x\pm y)=\frac{tanx\pm tany}{1\mp tanxtany} tan(x±y)=1tanxtanytanx±tany
  • t a n 2 x = 2 t a n x 1 − t a n 2 x tan2x=\frac{2tanx}{1-tan^2x} tan2x=1tan2x2tanx
  • s i n x = 2 t a n x 2 1 + t a n 2 x 2 sinx=\frac{2tan\frac{x}{2}}{1+tan^2\frac{x}{2}} sinx=1+tan22x2tan2x
  • c o s x = 1 − t a n 2 x 2 1 + t a n 2 x 2 cosx=\frac{1-tan^2\frac{x}{2}}{1+tan^2\frac{x}{2}} cosx=1+tan22x1tan22x
  • t a n x 2 = s i n x 1 + c o s x = 1 − c o s x s i n x tan \frac{x}{2}=\frac{sinx}{1+cosx}=\frac{1-cosx}{sinx} tan2x=1+cosxsinx=sinx1cosx
  • 二项式定理: ( a + b ) n = ∑ k = 0 n C n k a n − k b k (a+b)^n=\sum_{k=0}^n{C_n^ka^{n-k}b^k} (a+b)n=k=0nCnkankbk

极限存在准则

  • 夹逼准则:如果 ∀ x ∈ ( a , b ) , f ( x ) ≤ g ( x ) ≤ h ( x ) \forall x \in (a,b),f(x)\leq g(x)\leq h(x) x(a,b),f(x)g(x)h(x),且 lim ⁡ x → a f ( x ) = lim ⁡ x → a h ( x ) = A \lim\limits_{\substack{x\to a}}{f(x)}=\lim\limits_{\substack{x\to a}}{h(x)}=A xalimf(x)=xalimh(x)=A,则 lim ⁡ x → a g ( x ) = A \lim\limits_{\substack{x\to a}}{g(x)}=A xalimg(x)=A
  • 单调有界准则:如果 { x n } \{x_n\} {xn}单调递增且有上界,则 { x n } \{x_n\} {xn}收敛;如果 { x n } \{x_n\} {xn}单调递减且有下界,则 { x n } \{x_n\} {xn}收敛。

无穷小

定义:如果 lim ⁡ x → x 0 f ( x ) = 0 \lim\limits_{\substack{x\to x_0}}{f(x)}=0 xx0limf(x)=0,则称f(x)是当 x → x 0 x\to x_0 xx0时的无穷小。

无穷小的运算性质:有界函数与无穷小的乘积是无穷小。

无穷大

定义:如果 lim ⁡ x → x 0 f ( x ) = ∞ \lim\limits_{\substack{x\to x_0}}{f(x)}=\infty xx0limf(x)=,则称f(x)是当 x → x 0 x\to x_0 xx0时的无穷大。

无穷小的比较

  • 等价无穷小:如果 lim ⁡ x → x 0 f ( x ) g ( x ) = 1 \lim\limits_{\substack{x\to x_0}}{\frac{f(x)}{g(x)}}=1 xx0limg(x)f(x)=1,则称f(x)与g(x)是当 x → x 0 x\to x_0 xx0时的等价无穷小,记为 f ( x ) ∼ g ( x ) f(x)\sim g(x) f(x)g(x)
  • 同阶无穷小:如果 lim ⁡ x → x 0 f ( x ) g ( x ) = A ( A ≠ 0 ) \lim\limits_{\substack{x\to x_0}}{\frac{f(x)}{g(x)}}=A(A\ne 0) xx0limg(x)f(x)=A(A=0),则称f(x)与g(x)是当 x → x 0 x\to x_0 xx0时的同阶无穷小,记为 f ( x ) = O ( g ( x ) ) f(x)=O(g(x)) f(x)=O(g(x))
  • 高阶无穷小:如果 lim ⁡ x → x 0 f ( x ) g ( x ) = 0 \lim\limits_{\substack{x\to x_0}}{\frac{f(x)}{g(x)}}=0 xx0limg(x)f(x)=0,则称f(x)是当 x → x 0 x\to x_0 xx0时的高阶无穷小,记为 f ( x ) = o ( g ( x ) ) f(x)=o(g(x)) f(x)=o(g(x))
  • 低阶无穷小:如果 lim ⁡ x → x 0 f ( x ) g ( x ) = ∞ \lim\limits_{\substack{x\to x_0}}{\frac{f(x)}{g(x)}}=\infty xx0limg(x)f(x)=,则称f(x)是当 x → x 0 x\to x_0 xx0时的低阶无穷小,记为 f ( x ) = ω ( g ( x ) ) f(x)=\omega(g(x)) f(x)=ω(g(x))
  • k阶无穷小:如果 lim ⁡ x → x 0 f ( x ) g ( x ) k = A ( A ≠ 0 ) \lim\limits_{\substack{x\to x_0}}{\frac{f(x)}{g(x)^k}}=A(A\ne 0) xx0limg(x)kf(x)=A(A=0),则称f(x)是当 x → x 0 x\to x_0 xx0时的k阶无穷小,记为 f ( x ) = O ( g ( x ) k ) f(x)=O(g(x)^k) f(x)=O(g(x)k)

等价无穷小的重要性质

  • 为等价无穷小的充分必要条件:如果 f ( x ) ∼ g ( x ) f(x)\sim g(x) f(x)g(x),则 f ( x ) = g ( x ) + o ( g ( x ) ) f(x)=g(x)+o(g(x)) f(x)=g(x)+o(g(x))
  • 如果 α ∼ α ′ \alpha \sim \alpha ' αα β ∼ β ′ \beta \sim \beta ' ββ,且 lim ⁡ x → x 0 α β = A ( A ≠ 0 ) \lim\limits_{\substack{x\to x_0}}{\frac{\alpha}{\beta}}=A(A\ne 0) xx0limβα=A(A=0),则 lim ⁡ x → x 0 α ′ β ′ = A \lim\limits_{\substack{x\to x_0}}{\frac{\alpha '}{\beta '}}=A xx0limβα=A
  • α ∼ β \alpha \sim \beta αβ,且 ϕ ( x ) \phi(x) ϕ(x)极限存在或有界,则 lim ⁡ x → x 0 α ϕ ( x ) = lim ⁡ x → x 0 β ϕ ( x ) \lim\limits_{\substack{x\to x_0}}{\alpha \phi(x)}=\lim\limits_{\substack{x\to x_0}}{\beta \phi(x)} xx0limαϕ(x)=xx0limβϕ(x)
  • 传递性:如果 α ∼ β \alpha \sim \beta αβ β ∼ γ \beta \sim \gamma βγ,则 α ∼ γ \alpha \sim \gamma αγ

常用等价无穷小

x → 0 x\to 0 x0,则:

  • s i n x ∼ x sinx \sim x sinxx
  • t a n x ∼ x tanx \sim x tanxx
  • a r c s i n x ∼ x arcsinx \sim x arcsinxx
  • a r c t a n x ∼ x arctanx \sim x arctanxx
  • l n ( 1 + x ) ∼ x ln(1+x) \sim x ln(1+x)x
  • e x − 1 ∼ x e^x-1 \sim x ex1x
  • ( 1 + a x ) 1 x ∼ e a (1+ax)^{\frac{1}{x}} \sim e^a (1+ax)x1ea
  • ( 1 + x ) a − 1 ∼ a x (1+x)^a-1 \sim ax (1+x)a1ax
  • a x − 1 ∼ x l n a a^x-1 \sim xlna ax1xlna
  • l n ( 1 + a x ) ∼ a x ln(1+ax) \sim ax ln(1+ax)ax
  • l n ( 1 + x a ) ∼ x a ln(1+x^a) \sim x^a ln(1+xa)xa
  • a x − 1 ∼ x l n a a^x-1 \sim xlna ax1xlna

函数在一点的连续性

定义:如果 lim ⁡ x → x 0 f ( x ) = f ( x 0 ) \lim\limits_{\substack{x\to x_0}}{f(x)}=f(x_0) xx0limf(x)=f(x0),则称f(x)在 x 0 x_0 x0处连续。

函数在区间上的连续性

定义:如果 ∀ x ∈ ( a , b ) , lim ⁡ x → x 0 f ( x ) = f ( x 0 ) \forall x \in (a,b),\lim\limits_{\substack{x\to x_0}}{f(x)}=f(x_0) x(a,b),xx0limf(x)=f(x0),则称f(x)在 ( a , b ) (a,b) (a,b)上连续。

函数的间断点

第一类间断点(First Type Discontinuity):也称为可去间断点或点间断点。函数在某个点上的极限存在,但函数在该点的定义值与极限值不相等。判断方法是计算该点的极限,如果存在且与函数在该点的定义值不相等,则为第一类间断点。即: lim ⁡ x → x 0 f ( x ) = A ( A ≠ f ( x 0 ) ) \lim\limits_{\substack{x\to x_0}}{f(x)}=A(A\ne f(x_0)) xx0limf(x)=A(A=f(x0))

第二类间断点(Second Type Discontinuity):也称为跳跃间断点或断裂间断点。函数在某个点上的极限不存在,因为左右极限值不相等。判断方法是计算该点的左右极限,如果存在且不相等,则为第二类间断点。即: lim ⁡ x → x 0 − f ( x ) ≠ lim ⁡ x → x 0 + f ( x ) \lim\limits_{\substack{x\to x_0^-}}{f(x)}\ne \lim\limits_{\substack{x\to x_0^+}}{f(x)} xx0limf(x)=xx0+limf(x)

无穷间断点(Infinite Discontinuity):函数在某个点上的左右极限至少有一个趋于无穷大。判断方法是计算该点的左右极限,如果至少有一个极限趋于无穷大,则为无穷间断点。即: lim ⁡ x → x 0 − f ( x ) = ∞ \lim\limits_{\substack{x\to x_0^-}}{f(x)}=\infty xx0limf(x)= lim ⁡ x → x 0 + f ( x ) = ∞ \lim\limits_{\substack{x\to x_0^+}}{f(x)}=\infty xx0+limf(x)=

振荡间断点(Oscillating Discontinuity):函数在某个点上的极限不存在,因为函数在该点附近不断振荡。判断方法是观察函数在该点附近的行为,如果函数在该点附近不断振荡,没有趋于确定的值,则为振荡间断点

初等函数的连续性

  • 连续函数的四则运算的结果仍然是连续函数。
  • 反函数的连续性:如果f(x)在 x 0 x_0 x0处连续且 f ′ ( x 0 ) ≠ 0 f'(x_0)\ne 0 f(x0)=0,则 f − 1 ( x ) f^{-1}(x) f1(x) y 0 = f ( x 0 ) y_0=f(x_0) y0=f(x0)处连续。
  • 复合函数的连续性:如果 g(x) 在某个点 a 处连续,并且 f(x) 在 g(a) 处连续,那么复合函数 h(x) = f(g(x)) 在点 a 处连续。换句话说,如果组成复合函数的内部函数 g(x) 在某个点处连续,而外部函数 f(x) 在该内部函数的值处连续,那么复合函数在该点处连续。

闭区间连续函数的性质

  • 有界性:如果f(x)在 [ a , b ] [a,b] [a,b]上连续,则f(x)在 [ a , b ] [a,b] [a,b]上有界。
  • 最值定理:如果f(x)在 [ a , b ] [a,b] [a,b]上连续,则f(x)在 [ a , b ] [a,b] [a,b]上有最大值和最小值。
  • 介值定理:如果f(x)在 [ a , b ] [a,b] [a,b]上连续,且 f ( a ) ≠ f ( b ) f(a)\ne f(b) f(a)=f(b),则对于 ∀ y ∈ ( f ( a ) , f ( b ) ) \forall y \in (f(a),f(b)) y(f(a),f(b)) ∃ x 0 ∈ ( a , b ) \exists x_0 \in (a,b) x0(a,b),使得 f ( x 0 ) = y f(x_0)=y f(x0)=y
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

「已注销」

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值