函数的极限与连续性的关系

1.函数极限的定义:

假设 f ( x ) f(x) f(x) 是一个实函数, c c c 是一个实数,那么
lim ⁡ x → c   f ( x ) = L \lim_{x \to c} \ f(x) =L xclim f(x)=L
表示 f ( x ) f(x) f(x) 可以任意地靠近 L L L,只要我们让 x x x 充分靠近 c c c。此时,我们说当 x x x 趋向 c c c 时,函数 f ( x ) f(x) f(x) 的极限是 L L L。值得特别指出的是,这个定义在 f ( c ) f(c) f(c) 的时候同样是成立的。事实上,即使 f ( x ) f(x) f(x) c c c 点没有定义,我们仍然可以定义上述的极限。—《维基百科》

简 单 说 就 是 f ( x ) 在 c 点 的 左 右 极 限 都 存 在 且 相 等 , 如 图 \color{red}简单说就是f(x)在c点的左右极限都存在且相等,如图 f(x)c

在这里插入图片描述

注 意 : 函 数 f ( x ) 在 c 点 有 无 极 限 与 在 c 点 有 无 定 义 无 关 \color{red}注意:函数 f(x) 在 c 点有无极限与在 c 点有无定义无关 f(x)cc

2.函数在某一点连续的定义:

假设 f ( x ) f(x) f(x) 是一个实函数,定义域为R, f ( x ) f(x) f(x) 在R中的某一点 c c c 处连续当且仅当以下的两个条件满足即可:

  1. f ( x ) f(x) f(x) 在 c 点有定义。
  2. f ( x ) f(x) f(x) 在c点有极限,且极限等与 f ( x ) f(x) f(x) 在该点的函数值,即 lim ⁡ x → c   f ( x ) = f ( c ) \lim_{x \to c} \ f(x) =f(c) xclim f(x)=f(c)

详细定义请参考维基百科:
https://zh.wikipedia.org/wiki/%E8%BF%9E%E7%BB%AD%E5%87%BD%E6%95%B0

3.函数的极限与连续性的关系:

由 定 义 可 得 函 数 在 某 一 点 连 续 必 有 极 限 , 有 极 限 不 一 定 连 续 \color{red}由定义可得函数在某一点连续必有极限,有极限不一定连续
( 1 ) 函 数 在 某 一 点 连 续 一 定 有 极 限 吗 ? \color{fuchsia}(1)函数在某一点连续一定有极限吗? (1)

一定。根据定义函数在某一点连续必有极限

( 2 ) 连 续 函 数 一 定 有 极 限 吗 ? \color{fuchsia}(2)连续函数一定有极限吗? (2)

不一定。例如,函数 y = x y=x y=x x x x 趋向与正无穷时, y y y 也趋向与正无穷,不存在极限。连续函数一定存在极限指的是趋向某个确定值的时候才存在极限,比如 x x x 趋向与3。

( 3 ) 函 数 在 某 一 点 有 极 限 , 则 在 该 点 一 定 连 续 吗 ? \color{fuchsia}(3)函数在某一点有极限,则在该点一定连续吗? (3)

不一定。比如,第一类可去间断点函数,间断点的极限存在,但函数在该点无定义,所以不连续。

( 4 ) 函 数 在 某 一 点 有 极 限 , 则 该 点 一 定 有 定 义 吗 ? 有 定 义 一 定 有 极 限 吗 ? \color{fuchsia}(4)函数在某一点有极限,则该点一定有定义吗?有定义一定有极限吗? (4)

不一定。根据函数极限的定义,可得函数在某一点有极限与在该点是否有定义并无关系。
不一定。比如分段函数。

( 5 ) 有 界 的 连 续 函 数 一 定 有 极 限 吗 ? \color{fuchsia}(5)有界的连续函数一定有极限吗? (5)

不一定。比如三角函数 s i n ( x ) sin(x) sin(x)

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值