时间序列分析(2):ARMA模型

第3章 ARMA模型

        本章的目的在于用平稳时间序列模型分析平稳非白噪声序列。

3.0 方法性工具

3.0.1 差分运算   

一阶差分:\nabla\mathrm{x_t=x_t-x_{t-1}}

p 阶差分:\nabla^\mathrm{p}\mathbf{x}_\mathrm{t}=\nabla^{\mathrm{p-1}}(\nabla\mathbf{x}_\mathrm{t})=\nabla^{\mathrm{p-1}}\mathbf{x}_\mathrm{t}-\nabla^{\mathrm{p-1}}\mathbf{x}_\mathrm{t-1}

k 步差分:\nabla_{\mathrm{k}}\mathrm{x_t=X_t-X_{t-k}}

3.0.2 延迟算子

        延迟算子类似于一个时间指针,当前序列值乘以一个延迟算子,就相当于把当前序列值的时间向过去拨了一个时刻。记 B 为延迟算子,有:

\begin{aligned} &x_{t-1}=Bx_t \\ &x_{t-2}=B^2x_t \\ &... \\ &{x}_{t-p} =B^px_t,\forall p\geq1 \end{aligned}

        延迟算子的简单性质:

        

        (1)B^0=1

        (2)常数的任意阶数延迟仍然等于常数,即B^pc=c,其中,c为任意常数,p为任意正整数

        (3)若c为任意常数,有B(c\cdot x_t)=c\cdot B(x_t)=c\cdot x_{t-1}

        (4)B(x_t\pm y_t)=x_{t-1}\pm y_{t-1}

        (5)B^nx_t=x_{t-n}

        (6)(1-B)^n=\sum_{i=0}^n(-1)^iC_n^iB^i

        用延迟算子表示差分,则:

        一阶差分:\nabla{x_t}=(1-B)x_t

        p 阶差分:\nabla^px_t=(1-B)^px_t

        k 步差分:\nabla_kx_t=(1-B^k)x_t

3.0.3 非其次线性差分方程求解

        设现有 p 阶非齐次线性差分方程:1z_t+a_1z_{t-1}+a_2z_{t-2}+...+a_pz_{t-p}=h(t),

对应的 p 阶齐次线性差分方程:1z_t+a_1z_{t-1}+a_2z_{t-2}+...+a_pz_{t-p}=0

求 p 阶非齐次线性差分方程的解?

step1求非齐次线性差分方程对应的齐次线性差分方程的通解,记为Z_{t}^{\prime}.

        (1)求齐次线性差分方程对应的特征方程: \lambda^p+a_1\lambda^{\mathrm{p-1}}+a_2\lambda^{\mathrm{p-2}}+...+a_p = 0

        (2)求特征根:特征方程的根称为特征根(p次方就会有p个根),记作\lambda_{1},\lambda_{2},...,\lambda_{p}

        (3)求通解:①所有实根不相等:

Z_{t}^{\prime}=c_1\lambda_1^t+c_2\lambda_2^t+...+c_p\lambda_p^t

                                ②有相等实根(\lambda_{1}=\lambda_{2}=...=\lambda_{d}):

Z_{t}^{\prime}=(c_1+c_2t+...+c_dt^{d-1})\lambda_1^t+c_{d+1}\lambda_{d+1}^t+...+c_p\lambda_p^t

step2求非齐次线性差分方程的任意一个特解,记为Z_{t}^{\prime\prime}.

 通常借助待定系数法来求特解。设z_t=d(常数),则非齐次线性差分方程可写成:

d+a_1d+a_2d+...+a_pd=h(t)

解得,

d=\frac{h(t)}{1+a_1+a_2+...+a_p}

 即非齐次线性差分方程的一个特解Z_{t}^{\prime\prime}=d=\frac{h(t)}{1+a_1+a_2+...+a_p}.

step3求非齐次线性差分方程的通解,即step1中的通解与step2中的特解之和,记为Z_t

Z_{t}=Z_{t}^{\prime}+Z_{t}^{\prime\prime}

3.1 时间序列的world分解

确定性序列:只有序列本身以线性形式确定性地影响当前的序列值 ,没有其它的因素(包括随机因素)的影响。

随机性序列:对于所有时间 t, 抛开过去时刻对当前时刻序列的影响,至少会有随机因素(随机因素的方差和时间无关)来影响当前的序列值。

World分解定理:对于任何一个离散平稳过程它都可以分解为两个不相关的平稳序列之和,其中一个为确定性的,另一个为随机性的,记作

x_t=V_t+\xi_t

其中,\{V_t\}为确定性序列,\{\xi_t\}为随机序列.

3.2 AR模型及平稳性判定

3.2.1 AR模型的定义

定义:具有如下结构的模型称为p阶自回归模型,简记为AR(p)

\begin{cases}x_t=\varphi_0+\varphi_1x_{t-1}+\varphi_2x_{t-2}+\cdots+\varphi_px_{t-p}+\varepsilon_t\\\varphi_p\neq0\\E(\varepsilon_t)=0,Var(\varepsilon_t)=\sigma_\varepsilon^2,E(\varepsilon_t\varepsilon_s)=0,s\neq t\\E(\mathrm{x}_\mathrm{s}\boldsymbol{\varepsilon}_\mathrm{t})=0,\forall s<t\end{cases}

         其中,\varphi_p\neq0 保证最高阶数为p;

         E(\varepsilon_t)=0,Var(\varepsilon_t)=\sigma_\varepsilon^2,E(\varepsilon_t\varepsilon_s)=0,s\neq t 保证残差项为零均值白噪声;

         E(\mathrm{x}_\mathrm{s}\varepsilon_\mathrm{t})=0,\forall s<t 保证 t 期的随机干扰与过去 s 期的序列值无关.

        特别地,当 \varphi_0=0 时,称为中心化 AR(p) 模型.

3.2.2 AR模型的平稳性判别

Q:前面提到只有平稳的时间序列才可以用ARMA模型,为什么此处还需要再进行平稳性检验?

A:因为 时序图、自相关图、单位根检验的方法都存在错误率,需要再进一步利用模型的平稳性来判定序列是不是平稳的。 

一、时序图和自相关图检验法

实现过程:基于模型产生时间序列数据,然后用时序图或者自相关图来判别这些时间序列数据的平稳性。根据这些时间序列数据的平稳结果来判别模型是否平稳.

缺点:很依赖人为主观性.

二、特征根判别法和平稳域判别法

1.特征根判别法

        AR(p)模型平稳的 充要条件 是它的 p 个特征根都在单位圆内( 特征根|λ i |<1 ),根据 特征根和自回归系数多项式的根成倒数的性质等价判别条件是该模型的自回归系数多项式的根都在单位圆外 (Ф(u)=0的根|u i |>1).

 2.平稳域判别法

        平稳域—使特征根都在单位圆内的AP(p)的系数集合,即。较适合低阶AR模型,如1, 2阶, 高阶模型不容易推导平稳域。可以证明在AR(P)模型框架下,平稳域判别方法等价于特征根判别方法。


下面给出AR(1)和AR(2)模型的平稳性判别的例子:

 

3.2.3 平稳AR模型的统计性质

         本节讨论平稳AR模型的统计性质(AR模型生成序列的统计性质) ,主要包括均值、方差、自协方差、自相关系数、偏自相关系数。

一、均值

如果AR(p)满足平稳性,则有:

E(x_t)=E(\phi_0+\phi_1x_{t-1}+\cdots+\phi_px_{t-p}+\varepsilon_t)

因平稳序列均值为常数,且{εt } 为白噪声序列,有

E(x_{t})=\mu,E(\varepsilon_{t})=0\quad,\forall t\in T

其中,\mu=\frac{\varphi_0}{1-\varphi_1-\cdots-\varphi_p}. 若没有常数截距项(\varphi_0=0),则模型的均值就等于0.

 

二、方差(借助Green函数和传递形式

由于方差一般很难求出,所以要借助Green函数和传递形式。

Green函数和传递形式可以将 \Phi(B)x_{t} = \varepsilon_{t}  转化为→  

{\mathrm{x}_{\mathrm{t}} = \sum_{j=0}^{\infty}G_{j}\varepsilon_{t-j}}=\sum_{j=0}^{\infty}G_{j}B^{\mathrm{j}}\varepsilon_{t}=G(B)\varepsilon_{t},其中,G_{j}=\sum_{i=1}^{p}k_{i}\lambda^{j}_{i}

Green函数:G_{j}=\sum_{i=1}^{p}k_{i}\lambda^{j}_{i},格林函数呈指数下降

传递形式:{\mathrm{x}_{\mathrm{t}} = \sum_{j=0}^{\infty}G_{j}\varepsilon_{t-j}}

传递形式的目的:将AR模型对应的时间序列表示成关于白噪声的线性组合。

Green函数的求解:对于AR模型时间序列x_{t}=\phi_{0}+\phi_{1}x_{t-1}+\ldots+\phi_{p}x_{t-p}

即,G_{k}=\phi_{1}G_{k-1}+\phi_{2}G_{k-2}+\cdots+\phi_{p}G_{k-p}

 利用传递形式可以很容易求出方差:

\mathrm{Var(x_t)=\sum_{j=0}^{\infty}G_j^2var(\varepsilon_{t-j})=\sum_{j=0}^{\infty}G_j^2\sigma_\varepsilon^2}

下面来看一下AR(1)模型如何求方差:

AR(1)

Green函数:G_j=\phi_1^j,j=0,1,\cdots

方差:Var(x_{t}) = \sum_{j=0}^{\infty} G_{j}^{2}Var(\varepsilon_{t}) = \sum_{j=0}^{\infty} \varphi_{1}^{2j} \sigma_{\varepsilon}^{2} = \frac{\sigma_{\varepsilon}^{2}}{1 - \varphi_{1}^{2}} ,| \varphi_{1}^{2}| < 1(运算过程的最后一步用了泰勒级数的展开)

 

三、自协方差

对于AR(p)模型,这里给出自协方差的两种求法:

第一种:

\gamma(k)=Cov(X_t,X_{t+k})=\sigma_{\varepsilon}^{2}\sum_{i=0}^{\infty}G_{i}G_{i+k},其中 k=0,1,2,\cdots.

第二种:

\gamma_{\mathrm{k}}=\varphi_{1}\gamma_{\mathrm{k-1}}+\varphi_{2}\gamma_{\mathrm{k-2}}+\cdots+\varphi_{\mathrm{p}}\gamma_{\mathrm{k-p}}

下面来看一下AR(1)和AR(2) 模型如何求自协方差:

AR(1):

方差:\gamma_0=\frac{\sigma_\varepsilon^2}{1-\phi_1^2}

自协方差:\gamma_{1}=\phi_{1} \frac{\sigma_{\varepsilon}^{2}}{1-\phi_{1}^{2}}

AR(2):

\begin{cases}\gamma_0=\frac{1-\varphi_2}{(1+\varphi_2)(1-\varphi_1-\varphi_2)(1+\varphi_1-\varphi_2)}\sigma_\varepsilon^2\\\gamma_1=\frac{\varphi_1\gamma_0}{1-\varphi_2}\quad\\\gamma_2=\varphi_1{\gamma_{1}+\varphi_2\gamma_{0}}\end{cases}

四、自相关系数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值