数维杯国际赛D题《The Mathematics of Laundry Cleaning》翻译及思路

题目翻译

洗衣清洁的数学
洗衣清洁是人们每天都会做的事情。洗衣粉的去污功能来自于某些表面活性化学物质。它们可以增加水的渗透性,并利用分子间的静电排斥机制去除污垢颗粒。由于表面活性剂分子的形态,洗衣粉可以发挥双重功能。表面活性剂分子的一端是亲脂性的,可以吸引污垢并排斥水,而另一端是亲水性的,吸引水分子。当洗衣粉倒入水中时,亲脂部分会紧紧附着在未被水填满的任何表面,如被清洗物体的表面(由于身体或织物表面)。同时,亲水部分会排斥油脂物质。它削弱了维持水分子结合的分子间力(使水形成水滴的力量,如被弹性薄膜包裹),允许单个分子渗透到被清洁物体表面和污垢颗粒之间。因此,可以说表面活性剂降低了水的表面张力。洗衣机的机械作用或手工搓洗可以使表面被表面活性剂分子包围的污垢颗粒松动,而污垢颗粒则附着在表面活性剂分子的亲脂部分。这使得仍悬浮在物体表面的污垢颗粒在漂洗阶段被去除。
实际操作中,从小规模家庭操作到酒店和专业机构的专业操作,需要考虑的问题是:我们如何以较低的成本使洗衣干净整洁?这个看似简单的生活问题包含了深刻的数学原理。请开发适当的数学模型来解决以下问题:
(1)一个附有污垢的衣物,如果给定污垢量和可用水量,以及第k次洗涤时污垢在水中的溶解度为a_k(a_1 = 0.80,a_k = 0.5a_{k-1},k = 2,3,…),不考虑其他因素,最佳清洗方式是什么?给出关于洗涤次数和每次使用的水量的最优解,并讨论a_k、初始污垢量和可用水量对目标的影响。
(2)假设每次洗涤时间相同,且没有可用水量的限制,最终的污垢残留量应不超过初始污垢量的千分之一,其他条件类似于问题1。提供最节省时间的清洁计划,并分析a_k和初始污垢量对最优解的影响。
(3)有几件衣服上有污垢的类型和数量,如表1所示。现有十种洗涤剂,各种洗涤剂对污垢的溶解度和洗涤剂单位价格见表2。如果水费为每吨3.8元人民币,尝试给出既节约成本又清洁效果好的清洗方案。
(4)有几种不同材质的衣服,每件上的污垢类型和数量见表3。考虑到材质、颜色和其他方面的差异,有些衣服不能混合洗涤,如表4所示。在与问题2相同的条件下,尝试提供一个经济高效的清洁计划。
注:本次竞赛仅考虑常规的水洗方法。 术语定义:
(1)溶解度a_k:表示在第k次洗涤期间,相等量的洗涤剂相对于初始污垢量溶解污垢的比例。
(2)初始污垢量:表示清洗前衣物上的污垢数量,以克为单位。

解题思路

image.png

问题一思路

首先需要确定在给定污垢量、水量和洗涤时的污垢溶解度(ak)的条件下,如何最有效地清洗衣物。
由此可以建立以下模型

  • 设初始污垢量为 D,每次洗涤后剩余的污垢量为 Dk,每次使用的水量为 Wk
  • 迭代公式:可以使用迭代公式 Dk=Dk_−1×(1−_ak) 来模拟每次洗涤后的污垢减少。
  • 目标:找到最小的洗涤次数 n 使得 _Dn_≤1000/D

示例代码如下:

def optimal_washing(initial_dirt, a_k_values, water_per_wash):
    remaining_dirt = initial_dirt
    wash_count = 0
    while remaining_dirt > initial_dirt / 1000:
        a_k = a_k_values[min(wash_count, len(a_k_values) - 1)]
        remaining_dirt *= (1 - a_k)
        wash_count += 1
    return wash_count, wash_count * water_per_wash

# 示例参数
initial_dirt = 100 # 初始污垢量
a_k_values = [0.80] + [0.5 ** k for k in range(1, 10)] # 污垢溶解度列表
water_per_wash = 10 # 每次洗涤使用的水量

wash_count, total_water_used = optimal_washing(initial_dirt, a_k_values, water_per_wash)
print("洗涤次数:", wash_count)
print("总用水量:", total_water_used)

问题二思路

本题需要制定一个时间效率最高的清洁计划,同时保证最终的污垢残留量不超过初始污垢量的千分之一。这里的关键是最小化所需的洗涤次数。
首先确定在没有水量限制且每次洗涤时间相同的条件下,如何以最少的洗涤次数达到所需的清洁程度。
而后可以建立模型

  • 目标:找到最小的洗涤次数,使得最终污垢残留量低于初始量的千分之一。
  • 迭代公式:使用_Dk_=Dk_−1×(1−_ak) 来模拟每次洗涤后的污垢减少。

示例代码如下:

def efficient_washing(initial_dirt, a_k_values):
    remaining_dirt = initial_dirt
    wash_count = 0
    while remaining_dirt > initial_dirt / 1000:
        a_k = a_k_values[min(wash_count, len(a_k_values) - 1)]
        remaining_dirt *= (1 - a_k)
        wash_count += 1
    return wash_count

# 示例参数
initial_dirt = 100 # 初始污垢量
a_k_values = [0.80] + [0.5 ** k for k in range(1, 10)] # 污垢溶解度列表

wash_count = efficient_washing(initial_dirt, a_k_values)
print("最少洗涤次数:", wash_count)

问题三思路

对于本题,我们需要考虑如何在节约成本的同时达到良好的清洁效果。这要求我们同时考虑洗涤剂的成本、效果以及水费。
理解问题:找出一种成本最低的洗涤方案,同时保证清洁效果。
建立模型

  • 目标:最小化总成本,包括洗涤剂成本和水费。
  • 约束:确保每件衣服的污垢均能有效清洁。
  • 优化变量:选择不同种类的洗涤剂和其使用量。

可以使用线性规划等优化方法方法。
示例代码如下:

import pulp

# 创建一个线性规划问题实例
problem = pulp.LpProblem("Laundry_Cleaning_Optimization", pulp.LpMinimize)

# 假设的数据:洗涤剂成本(每单位)、洗涤效果、污垢种类的清洁需求等
detergents = {"detergent1": {"cost": 2, "effectiveness": 0.8},
              "detergent2": {"cost": 3, "effectiveness": 0.9}}
dirt_types = {"dirt1": 10, "dirt2": 15} # 每种污垢的数量

# 定义决策变量:每种洗涤剂的使用量
variables = {d: pulp.LpVariable(f"use_{d}", lowBound=0, cat='Continuous') for d in detergents}

# 添加目标函数:最小化总成本
problem += pulp.lpSum([variables[d] * detergents[d]["cost"] for d in detergents]), "Total Cost"

# 添加约束:每种污垢都要被清洁
for dirt in dirt_types:
    problem += pulp.lpSum([variables[d] * detergents[d]["effectiveness"] for d in detergents]) >= dirt_types[dirt]

# 求解问题
problem.solve()

# 输出结果
for v in problem.variables():
    print(v.name, "=", v.varValue)
print("Total Cost:", pulp.value(problem.objective))

问题四思路

针对本题,我们需要考虑衣物的不同材质和污垢类型,并制定一个既经济又高效的清洁计划。这里的挑战在于考虑到某些衣物不能混洗的约束。
理解问题:在给定的衣物材质和污垢类型以及不能混洗的约束下,找出一个最节约成本和时间的清洁方案。
建立模型

  • 目标:最小化总成本和洗涤次数。
  • 约束条件:根据材质和颜色的不同,一些衣物不能混洗。
  • 优化变量:决定每个洗涤批次的衣物组合和使用的洗涤剂。

示例代码如下:

import pulp

# 创建线性规划问题实例
problem = pulp.LpProblem("Laundry_Cleaning_Optimization", pulp.LpMinimize)

# 假设的数据:衣物类型、洗涤剂成本、混洗限制等
clothing_types = ["cloth1", "cloth2", "cloth3"]
detergents = {"detergent1": 2, "detergent2": 3}  # 每单位洗涤剂的成本
mixing_restrictions = {("cloth1", "cloth2"): False, ("cloth2", "cloth3"): True}  # 是否能混洗

# 定义决策变量
variables = {c: pulp.LpVariable(f"wash_{c}", cat='Binary') for c in clothing_types}
detergent_vars = {d: pulp.LpVariable(f"detergent_{d}", lowBound=0, cat='Continuous') for d in detergents}

# 添加目标函数
problem += pulp.lpSum([variables[c] for c in clothing_types]) + pulp.lpSum([detergent_vars[d] * detergents[d] for d in detergents]), "Total Cost"

# 添加混洗限制
for c1, c2 in mixing_restrictions:
    if not mixing_restrictions[(c1, c2)]:
        problem += variables[c1] + variables[c2] <= 1

# 求解问题
problem.solve()

# 输出结果
for v in problem.variables():
    print(v.name, "=", v.varValue)
print("Total Cost:", pulp.value(problem.objective))

【扫描下方二维码,获取更多资料~】

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Computerized Tomography (CT) is a medical imaging technique that uses X-rays and computer algorithms to produce detailed images of the body. The mathematics behind CT involves the use of mathematical transforms such as the Radon transform and the Fourier transform. The Radon transform is used to convert a 2D image into a set of line integrals. This transform is the basis for the creation of CT images. A CT scanner rotates around the patient and takes multiple X-ray images from different angles. The Radon transform is applied to each of these images to obtain a set of line integrals that represent the attenuation of X-rays through the patient's body. The Fourier transform is used to convert the line integrals obtained from the Radon transform into a 3D image. The Fourier transform is applied to the set of line integrals to obtain a set of frequency components. These frequency components represent the different spatial frequencies present in the image. By inverting the Fourier transform, a 3D image can be reconstructed from the frequency components. The mathematics of CT also involves the use of algorithms to process the data obtained from the CT scanner. One of the most commonly used algorithms is the filtered back projection algorithm. This algorithm involves filtering the line integrals obtained from the Radon transform to remove noise and other artifacts. The filtered line integrals are then back-projected to obtain a 3D image. In summary, the mathematics of CT involves the use of mathematical transforms such as the Radon transform and the Fourier transform, as well as algorithms to process the data obtained from the CT scanner. These mathematical techniques are essential for the creation of detailed and accurate CT images, which are used in the diagnosis and treatment of a wide range of medical conditions.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值