基于BP神经网络的电力负荷预测(Matlab代码实现)

1 概述

随着电力工业逐步进入市场化,区域配电网短期电力负荷预测在电力行业中地位越来越重要,精准的短期负荷预测方法对电力系统安全稳定的运行至关重要。因此,文章在综合分析实际负荷特征和BP神经网络原理的基础上,提出BP神经网络预测方法。

2 运行结果

 

3 完整Matlab代码实现 

%创建训练样本输入集
clc,clear
num=24;%对应24个特征
len=9;%有9行数据
data=xlsread('data_new');
data=data(2:len+1,:);

%建立训练集测试集
x_train=[data(1:len-2,:).'];
x_test=[data(len-1,:).'];
y_train=[data(2:len-1,:).'];
test=[data(len,:).'];

%创建BP神经网络
%创建网络
net=newff(minmax(x_train),[7,24],{'tansig','purelin'},'trainlm');%隐层神经元个数,输出层神经元个数,第1个参数为测试输入的输入范围
%设置训练次数
net.trainParam.epochs = 100;
%设置收敛误差
net.trainParam.goal=0.001;
%训练网络
[net,tr]=train(net,x_train,y_train);
%在训练集和测试集上的表现
y_train_predict=sim(net,x_train);
Predict=sim(net,x_test);
%作图 分别在测试集上
x=0:1:23;
plot(x,Predict,x,test);
grid on
xlabel('时间'),ylabel('用电量')%命名
legend('预测值','真实值');
rmse=(sum((Predict-test).^2)/24)^0.5
mae=sum(abs(Predict-test))/24
mape=sum(abs(Predict-test)./test)/24*100

%创建训练样本输入集
clc,clear
num=24;%对应24个特征
len=9;%有9行数据
data=xlsread('data_new');
data=data(2:len+1,:);

%建立训练集测试集
x_train=[data(1:len-2,:).'];
x_test=[data(len-1,:).'];
y_train=[data(2:len-1,:).'];
test=[data(len,:).'];

%创建BP神经网络
%创建网络
net=newff(minmax(x_train),[7,24],{'tansig','purelin'},'trainlm');%隐层神经元个数,输出层神经元个数,第1个参数为测试输入的输入范围
%设置训练次数
net.trainParam.epochs = 100;
%设置收敛误差
net.trainParam.goal=0.001;
%训练网络
[net,tr]=train(net,x_train,y_train);
%在训练集和测试集上的表现
y_train_predict=sim(net,x_train);
Predict=sim(net,x_test);
%作图 分别在测试集上
x=0:1:23;
plot(x,Predict,x,test);
grid on
xlabel('时间'),ylabel('用电量')%命名
legend('预测值','真实值');
rmse=(sum((Predict-test).^2)/24)^0.5
mae=sum(abs(Predict-test))/24
mape=sum(abs(Predict-test)./test)/24*100

4 数据

链接:https://pan.baidu.com/s/19qZsZeoO8BgByO1k9a_YDw 
提取码:6nh7 
--来自百度网盘超级会员V2的分享 

到23:00 

%创建训练样本输入集
clc,clear
num=24;%对应24个特征
len=9;%有9行数据
data=xlsread('data_new');
data=data(2:len+1,:);

%建立训练集测试集
x_train=[data(1:len-2,:).'];
x_test=[data(len-1,:).'];
y_train=[data(2:len-1,:).'];
test=[data(len,:).'];

%创建BP神经网络
%创建网络
net=newff(minmax(x_train),[7,24],{'tansig','purelin'},'trainlm');%隐层神经元个数,输出层神经元个数,第1个参数为测试输入的输入范围
%设置训练次数
net.trainParam.epochs = 100;
%设置收敛误差
net.trainParam.goal=0.001;
%训练网络
[net,tr]=train(net,x_train,y_train);
%在训练集和测试集上的表现
y_train_predict=sim(net,x_train);
Predict=sim(net,x_test);
%作图 分别在测试集上
x=0:1:23;
plot(x,Predict,x,test);
grid on
xlabel('时间'),ylabel('用电量')%命名
legend('预测值','真实值');
rmse=(sum((Predict-test).^2)/24)^0.5
mae=sum(abs(Predict-test))/24
mape=sum(abs(Predict-test)./test)/24*100

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值