【16QAM误码率与格雷映射】推导AWGN中格雷编码星座映射的理论16QAM误码率(BER)(Matlab代码实现)

  💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

16QAM误码率与格雷映射:推导AWGN中格雷编码星座映射的理论16QAM误码率(BER)研究

1. 引言

2. 16QAM基本原理

3. 格雷映射

4. AWGN信道下的误码率推导

5. 仿真与理论对比

6. 结论

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

16QAM误码率与格雷映射:推导AWGN中格雷编码星座映射的理论16QAM误码率(BER)研究

1. 引言

16QAM(16 Quadrature Amplitude Modulation,16正交振幅调制)是一种常用的多进制调制方案,因其较高的频谱利用率和良好的抗噪声性能,被广泛应用于各种无线通信系统,例如Wi-Fi、LTE等。本文将详细推导在高斯白噪声(AWGN)信道中,采用格雷编码星座映射的16QAM调制技术的理论误码率(BER)。

2. 16QAM基本原理
  1. 星座图:16QAM使用一个4x4的星座图表示信号点,每个点代表一个特定的信号符号。星座图的横轴和纵轴分别表示两个正交的载波信号,通过调整两个载波信号的幅度和相位来表示不同的信号点。

  2. 符号映射:将输入的数字数据分成4位一组,每组对应星座图中的一个信号点。每个信号点代表一个特定的幅度和相位组合。

  3. 调制:将每组数据映射到对应的星座图信号点,并通过正交调制将两个载波信号叠加在一起,形成调制后的信号。

  4. 解调:接收端通过解调将接收到的信号分离成两个正交的载波信号,并根据接收到的信号点在星座图中找到对应的数据。

3. 格雷映射

格雷映射是一种将比特序列映射到16QAM星座点的技术,旨在最小化相邻符号间的比特差异,从而减少误码传播。16QAM的格雷映射规则如下表所示:

十进制格雷码
00000
10001
30011
20010
40110
50111
70101
60100
81100
91101
111111
101110
121010
131011
151001
141000
4. AWGN信道下的误码率推导

在高斯白噪声信道中,接收到的信号可以表示为:

r = s + n

其中,r为接收信号,s为发送信号,n为高斯白噪声。

误码率(BER)是指在接收信号中出现的错误比特数占总比特数的比例。对于16QAM调制,每个符号携带4比特信息,因此误码率可以表示为:

BER = 误比特数 / 总比特数

假设符号能量为Es,噪声功率谱密度为N0,则信噪比(SNR)可以表示为:

SNR = Es / N0

在高斯白噪声信道中,16QAM的理论误码率可以通过以下公式推导:

误符号率(SER)为:

SER = 2 * (1 - 1/sqrt(M)) * Q(sqrt(3 * SNR / (M - 1)))

其中,M为调制阶数(对于16QAM,M=16),Q函数为高斯误差函数。

误比特率(BER)可以表示为:

BER = SER / log2(M)

将SER的公式代入BER的公式中,得到:

BER = (2 * (1 - 1/sqrt(16)) * Q(sqrt(3 * SNR / (16 - 1)))) / log2(16)

BER = (2 * (1 - 1/4) * Q(sqrt(3 * SNR / 15))) / 4

BER = (3/2 * Q(sqrt(SNR / 5))) / 4

BER = (3/8) * Q(sqrt(SNR / 5))

5. 仿真与理论对比

为了验证理论推导的正确性,可以通过MATLAB进行仿真。仿真步骤包括:

  1. 生成随机二进制序列。
  2. 根据格雷映射为每个16-QAM星座符号分配4位组。
  3. 添加高斯白噪声。
  4. 16-QAM符号的解调。
  5. 每十进制去映射到格雷转换。
  6. 计算误码数。

6. 结论

通过理论推导和MATLAB仿真,可以验证在AWGN信道中采用格雷编码星座映射的16QAM调制的理论误码率。仿真结果表明,随着信噪比的增加,误码率逐渐降低,与理论推导结果一致。因此,16QAM是一种性能优良的调制方案,在实际应用中具有广泛的应用前景。

📚2 运行结果

部分代码:

% Bit Error Rate for 16-QAM modulation using Gray modulation mapping

clear
N = 10^5; % number of symbols
M = 16;   % constellation size
k = log2(M); % bits per symbol

% defining the real and imaginary PAM constellation
% for 16-QAM
alphaRe = [-(2*sqrt(M)/2-1):2:-1 1:2:2*sqrt(M)/2-1];
alphaIm = [-(2*sqrt(M)/2-1):2:-1 1:2:2*sqrt(M)/2-1];
k_16QAM = 1/sqrt(10);

Eb_N0_dB  = [0:15]; % multiple Es/N0 values
Es_N0_dB  = Eb_N0_dB + 10*log10(k);

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)

[1]沈寅涛,王琳凯,周晓方.一种基于格雷映射的TCM编码方案[J].计算机工程, 2011, 37(21):3.

[2]向劲松,陈怀柔.QAM调制下基于卷积码与累加编码调制级联的纠错码性能研究[J].半导体光电, 2023(6):924-930.

🌈Matlab代码实现

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值