💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
16QAM误码率与格雷映射:推导AWGN中格雷编码星座映射的理论16QAM误码率(BER)研究
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
16QAM误码率与格雷映射:推导AWGN中格雷编码星座映射的理论16QAM误码率(BER)研究
1. 引言
16QAM(16 Quadrature Amplitude Modulation,16正交振幅调制)是一种常用的多进制调制方案,因其较高的频谱利用率和良好的抗噪声性能,被广泛应用于各种无线通信系统,例如Wi-Fi、LTE等。本文将详细推导在高斯白噪声(AWGN)信道中,采用格雷编码星座映射的16QAM调制技术的理论误码率(BER)。
2. 16QAM基本原理
-
星座图:16QAM使用一个4x4的星座图表示信号点,每个点代表一个特定的信号符号。星座图的横轴和纵轴分别表示两个正交的载波信号,通过调整两个载波信号的幅度和相位来表示不同的信号点。
-
符号映射:将输入的数字数据分成4位一组,每组对应星座图中的一个信号点。每个信号点代表一个特定的幅度和相位组合。
-
调制:将每组数据映射到对应的星座图信号点,并通过正交调制将两个载波信号叠加在一起,形成调制后的信号。
-
解调:接收端通过解调将接收到的信号分离成两个正交的载波信号,并根据接收到的信号点在星座图中找到对应的数据。
3. 格雷映射
格雷映射是一种将比特序列映射到16QAM星座点的技术,旨在最小化相邻符号间的比特差异,从而减少误码传播。16QAM的格雷映射规则如下表所示:
十进制 | 格雷码 |
---|---|
0 | 0000 |
1 | 0001 |
3 | 0011 |
2 | 0010 |
4 | 0110 |
5 | 0111 |
7 | 0101 |
6 | 0100 |
8 | 1100 |
9 | 1101 |
11 | 1111 |
10 | 1110 |
12 | 1010 |
13 | 1011 |
15 | 1001 |
14 | 1000 |
4. AWGN信道下的误码率推导
在高斯白噪声信道中,接收到的信号可以表示为:
r = s + n
其中,r为接收信号,s为发送信号,n为高斯白噪声。
误码率(BER)是指在接收信号中出现的错误比特数占总比特数的比例。对于16QAM调制,每个符号携带4比特信息,因此误码率可以表示为:
BER = 误比特数 / 总比特数
假设符号能量为Es,噪声功率谱密度为N0,则信噪比(SNR)可以表示为:
SNR = Es / N0
在高斯白噪声信道中,16QAM的理论误码率可以通过以下公式推导:
误符号率(SER)为:
SER = 2 * (1 - 1/sqrt(M)) * Q(sqrt(3 * SNR / (M - 1)))
其中,M为调制阶数(对于16QAM,M=16),Q函数为高斯误差函数。
误比特率(BER)可以表示为:
BER = SER / log2(M)
将SER的公式代入BER的公式中,得到:
BER = (2 * (1 - 1/sqrt(16)) * Q(sqrt(3 * SNR / (16 - 1)))) / log2(16)
BER = (2 * (1 - 1/4) * Q(sqrt(3 * SNR / 15))) / 4
BER = (3/2 * Q(sqrt(SNR / 5))) / 4
BER = (3/8) * Q(sqrt(SNR / 5))
5. 仿真与理论对比
为了验证理论推导的正确性,可以通过MATLAB进行仿真。仿真步骤包括:
- 生成随机二进制序列。
- 根据格雷映射为每个16-QAM星座符号分配4位组。
- 添加高斯白噪声。
- 16-QAM符号的解调。
- 每十进制去映射到格雷转换。
- 计算误码数。
6. 结论
通过理论推导和MATLAB仿真,可以验证在AWGN信道中采用格雷编码星座映射的16QAM调制的理论误码率。仿真结果表明,随着信噪比的增加,误码率逐渐降低,与理论推导结果一致。因此,16QAM是一种性能优良的调制方案,在实际应用中具有广泛的应用前景。
📚2 运行结果
部分代码:
% Bit Error Rate for 16-QAM modulation using Gray modulation mapping
clear
N = 10^5; % number of symbols
M = 16; % constellation size
k = log2(M); % bits per symbol
% defining the real and imaginary PAM constellation
% for 16-QAM
alphaRe = [-(2*sqrt(M)/2-1):2:-1 1:2:2*sqrt(M)/2-1];
alphaIm = [-(2*sqrt(M)/2-1):2:-1 1:2:2*sqrt(M)/2-1];
k_16QAM = 1/sqrt(10);
Eb_N0_dB = [0:15]; % multiple Es/N0 values
Es_N0_dB = Eb_N0_dB + 10*log10(k);
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)
[1]沈寅涛,王琳凯,周晓方.一种基于格雷映射的TCM编码方案[J].计算机工程, 2011, 37(21):3.
[2]向劲松,陈怀柔.QAM调制下基于卷积码与累加编码调制级联的纠错码性能研究[J].半导体光电, 2023(6):924-930.
🌈4 Matlab代码实现
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取