节前,我们组织了一场算法岗技术&面试讨论会,邀请了一些互联网大厂朋友、参加社招和校招面试的同学,针对大模型技术趋势、大模型落地项目经验分享、新手如何入门算法岗、该如何备战、面试常考点分享等热门话题进行了深入的讨论。
今天我们分享一个同学的面试题,希望对后续找工作的有所帮助。喜欢记得点赞、收藏、关注。更多技术交流&面经学习,可以文末加入我们。
一面
时间:11.15 时长:60min
1.Transformer
(1)结构
(2)为什么它能处理多种模态,是怎么处理的
(3)它怎么用于图像分类,怎么处理图像的
(4)他的解码器和编码器有什么不同
(5)Mask编码
2.BN的作用和好处
减少损失函数后梯度消失
3.Dropout的好处
4.梯度消失的原因
5.Resnet为什么能减缓梯度消失的原因
6.在nums寻找最小的连续子数组使得它们的和大于所给的targets
法1: 前缀和+二分
def search(s, k, n, t):
t > s[n]:
return -1
l, r = k, n
res = n
while l < r:
mid = (l + r) >> 1
if s[mid] >= t:
res = mid
r = mid - 1
else:
l = mid + 1
return res
def func(targets, nums):
if targets < sum(nums):
return 0
n = len(nums)
s = [0] * (n + 1)
for i in range(1, n+1):
s[i] = s[i - 1] + nums[i]
res = n
for i in range(1, n+1):
t = targets + s[i - 1]
d = search(s, i, n, t)
if d > i and d - i + 1 < res:
res = d - i + 1
return res
target = 7
nums = [2,3,1,2,4,3]
print(func(target, nums))
法2: 双指针
二面
时间:12.01 时长:50-60min
1.介绍项目
2.说说对最近比较火的多模态图像生成的了解
3.coding
(1)求一个数的N次幂
def pow(k, n):
if k == 0 and n == 0:
return None
flag = 1
if n < 0:
flag = 0
res = 1
while n > 0:
if n % 2 == 1:
res = res * k
k *= k
n //= 2
if flag == 1:
return res
return 1.0 / res
(2)全排列
输入: 5,3
输出: [(1,2,3),(1,2,4),(1,2,5),(2,3,4),(2,3,5),(3,4,5),…]
import copy
def dfs(l, res, n, m, index, level, tmp):
if level > m:
return
if index >= n:
return
if level == m:
t = copy.deepcopy(tmp)
res.append(tuple(t))
return
for i in range(index, n - m + level + 1):
tmp.append(res[i])
dfs(l, res, n, m, i+1, level+1, tmp)
tmp.pop()
def pailie(n, m):
l = range(1, n+1)
res = []
tmp = []
dfs(l, res, n, m, 0, 0, tmp)
return res
技术交流群
前沿技术资讯、算法交流、求职内推、算法竞赛、面试交流(校招、社招、实习)等、与 10000+来自港科大、北大、清华、中科院、CMU、腾讯、百度等名校名企开发者互动交流~
我们建了算法岗技术与面试交流群, 想要进交流群、需要源码&资料、提升技术的同学,可以直接加微信号:mlc2040。加的时候备注一下:研究方向 +学校/公司+CSDN,即可。然后就可以拉你进群了。
方式①、微信搜索公众号:机器学习社区,后台回复:加群
方式②、添加微信号:mlc2040,备注:技术交流