GraphRAG+Ollama,构建本地精准全局问答系统!

最近这一两周看到不少互联网公司都已经开始秋招提前批了。

不同以往的是,当前职场环境已不再是那个双向奔赴时代了。求职者在变多,HC 在变少,岗位要求还更高了。

最近,我们又陆续整理了很多大厂的面试题,帮助一些球友解惑答疑,分享技术面试中的那些弯弯绕绕。

总结链接如下:

《大模型面试宝典》(2024版) 发布!

喜欢本文记得收藏、关注、点赞。更多实战和面试交流,文末加入我们


RAG 是目前大语言模型相关最知名的工具之一,从外部知识库中检索事实,以便为大型语言模型 (LLM) 提供最准确、最新的信息。但 RAG 并不完美,在更好的使用 RAG 方面仍存在许多挑战。例如当针对整个文本文档提出一个全局的问题时,RAG会失败,因为RAG本质是一个查询聚焦摘要任务,需要先基于index做检索,而且不是一个明确的检索全文任务。同时受限于大语言模型的上下文窗口限制,不可避免中间信息和关联信息丢失的问题。

为了解决这些问题,微软提出了Graph RAG方法,使用 LLM 在两个阶段构建基于图的文本索引:首先从源文档中推导出实体知识图,然后为所有密切相关的实体组预生成社区摘要。给定一个问题,每个社区摘要用于生成部分响应,然后对所有部分响应进行总结以提供最终响应。对于一类关于 100 万个标记范围的数据集的全局理解问题,Graph RAG证明了图 RAG 在生成答案的全面性和多样性方面相对于简单的 RAG 基线有了显着改进。

图片

但是,Graph RAG使用大语言模型从源文件抽取图entity和总结,并建设图索引,对token的消耗非常大,小编给大家算了一笔账,如果使用GPT-4o,一篇5万字左右的文档,Graph RAG的示例代码构建图的文本索引消耗27万左右 tokens,单次问答消耗约1万tokens,做个测试预计消费2-4美元,这也太贵了!

最佳实践

为了让更多的人更加容易体验Graph RAG,本文在魔搭社区的免费Notebook算力中,体验使用本地模型+Ollama+GraphRAG。

参考项目:

https://github.com/TheAiSingularity/graphrag-local-ollama

代码解析

该项目主要修改了文件路径/graphrag-local-ollama/graphrag/llm/openai/openai_embeddings_llm.py文件,将embedding的调用方式从OpenAI格式改为Ollama格式,大家也可以clone官方代码做如下修改,或者使用如Text-embedding-inference之类的支持OpenAI embedding API格式的库。

class OpenAIEmbeddingsLLM(BaseLLM[EmbeddingInput, EmbeddingOutput]):
    _client: OpenAIClientTypes
    _configuration: OpenAIConfiguration

    def __init__(self, client: OpenAIClientTypes, configuration: OpenAIConfiguration):
        self._client = client
        self._configuration = configuration

    async def _execute_llm(
        self, input: EmbeddingInput, **kwargs: Unpack[LLMInput]
    ) -> EmbeddingOutput | None:
        args = {
            "model": self._configuration.model,
            **(kwargs.get("model_parameters") or {}),
        }
        embedding_list = []
        for inp in input:
            embedding = ollama.embeddings(model="nomic-embed-text", prompt=inp)
            embedding_list.append(embedding["embedding"])
        return embedding_list

模型配置

安装Ollama

# 运行ollama安装脚本
cd ollama-linux
sudo chmod 777 ./ollama-modelscope-install.sh
./ollama-modelscope-install.sh

embedding模型使用Ollama自带的nomic-embed-text

ollama pull nomic-embed-text  #embedding

模型链接:

modelscope download --model=LLM-Research/Mistral-7B-Instruct-v0.3-GGUF --local_dir . Mistral-7B-Instruct-v0.3.fp16.gguf

创建ModelFile

FROM /mnt/workspace/Mistral-7B-Instruct-v0.3.fp16.gguf
PARAMETER stop "[INST]"
PARAMETER stop "[/INST]"


TEMPLATE """{{- if .Messages }}
{{- range $index, $_ := .Messages }}
{{- if eq .Role "user" }}
{{- if and (eq (len (slice $.Messages $index)) 1) $.Tools }}[AVAILABLE_TOOLS] {{ $.Tools }}[/AVAILABLE_TOOLS]
{{- end }}[INST] {{ if and $.System (eq (len (slice $.Messages $index)) 1) }}{{ $.System }}

{{ end }}{{ .Content }}[/INST]
{{- else if eq .Role "assistant" }}
{{- if .Content }} {{ .Content }}
{{- else if .ToolCalls }}[TOOL_CALLS] [
{{- range .ToolCalls }}{"name": "{{ .Function.Name }}", "arguments": {{ .Function.Arguments }}}
{{- end }}]
{{- end }}</s>
{{- else if eq .Role "tool" }}[TOOL_RESULTS] {"content": {{ .Content }}} [/TOOL_RESULTS]
{{- end }}
{{- end }}
{{- else }}[INST] {{ if .System }}{{ .System }}

{{ end }}{{ .Prompt }}[/INST]
{{- end }} {{ .Response }}
{{- if .Response }}</s>
{{- end }}"""

创建模型

ollama create mymistral --file ./ModelFile

clone Graphrag(ollama版本)repo并安装

git clone https://github.com/TheAiSingularity/graphrag-local-ollama.git
cd graphrag-local-ollama/
pip install -e .

创建输入文件夹

将实验数据复制保存在./ragtest中,也可以增加自己的数据,目前仅支持.txt格式

mkdir -p ./ragtest/input
cp input/* ./ragtest/input

初始化

初始化ragtest文件夹,并存入配置文件

python -m graphrag.index --init --root ./ragtest
mv settings.yaml ./ragtest

可以将配置文件中的模型文件和embedding模型按照需求做对应的修改,如:

图片

运行索引并创建图:

这部分对LLM有蛮大的要求,如果LLM的输出json格式不稳定,创建图的过程将被中断,在过程中,我们也尝试了多个模型,mistral的json输出稳定性比较好。

python -m graphrag.index --root ./ragtest

图片

运行query,目前仅支持全局方式

python -m graphrag.query --root ./ragtest --method global "What is machinelearning?"

同时,使用如下python代码,生成可视化的graphml文件

from pygraphml import GraphMLParser

parser = GraphMLParser()
g = parser.parse("./graphrag-local-ollama/ragtest/output/***/artifacts/summarized_graph.graphml")

g.show()

图片

技术交流&资料

在这里插入图片描述

用通俗易懂方式讲解系列

vue2是一种流行的JavaScript框架,用于构建用户界面。它具有响应式数据绑定和页面组件化的特性,使开发人员能够更轻松地构建交互式和可复用的Web应用程序。 Neo4j是一种图形数据库管理系统,用于存储、管理和查询图形结构化数据。它使用节点和关系的概念来表示数据,并提供强大的查询语言(Cypher)来处理复杂的图形查询。Neo4j被广泛应用于社交网络、推荐系统、网络分析和知识图谱等领域。 Vis是一个基于JavaScript的数据可视化库,用于呈现和探索各种类型的数据。它提供了丰富的可定制化选项和交互功能,使开发人员能够根据自己的需求创建各种图表、图形和网络图。 结合Vue2、Neo4j和Vis可以实现强大的数据可视化应用。在Vue2中,可以使用Vue的生命周期钩子和组件化特性来集成Neo4j和Vis。可以使用Neo4j的JavaScript驱动程序连接到Neo4j数据库,并执行Cypher查询来获取数据。然后,可以使用Vis库来创建各种交互式图表和图形,以将数据直观地可视化。 例如,可以使用Vis创建一个网络图,将Neo4j中的节点表示为图中的节点,将Neo4j中的关系表示为节点之间的连接线。然后,可以使用Vue2来处理用户交互,并使用Neo4j的查询来动态更新图形。通过结合Vue2、Neo4j和Vis,可以轻松地创建具有强大数据可视化能力的Web应用程序。 综上所述,Vue2、Neo4j和Vis是三种强大的工具,它们的结合可以实现复杂数据可视化应用。通过利用Vue2的组件化、Neo4j的图形数据库和Vis的数据可视化功能,开发人员可以创建出具有丰富、互动和易读性强的数据可视化应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值