阿里淘天多模态大模型面经分享

最近春招和实习已开启了。

不同以往的是,当前职场环境已不再是那个双向奔赴时代了。求职者在变多,HC 在变少,岗位要求还更高了。

最近,我们又陆续整理了很多大厂的面试题,帮助一些球友解惑答疑,分享技术面试中的那些弯弯绕绕。

喜欢本文记得收藏、关注、点赞


在这里插入图片描述

部门与岗位

淘天- 搜推智能产品事业部- 多模态大模型

总结

整体来说面试体验比较好,问的问题都不难,面试官也都不错,遇到一些卡壳的地方也会进行引导讨论,面试氛围很轻松。三面应该是加面的大老板面,从交流可以看出来对整个大模型这块的理解还是很深刻的,收获不小。

一面

  1. 首先是自我介绍和过项目,面试官还一起探讨项目用到的方法,可行性之类的
  2. 介绍一下 CLIP
  3. 了解 LoRA 吗,LoRA 微调的原理是什么
  4. 了解哪些多模态大模型,简要介绍几个
  5. BLIP 的三个损失函数分别是什么,数据是怎样清洗的
  6. BLIP2 相对于 BLIP 有哪些改进,BLIP3 又有哪些改进
  7. Qwen-VL 的三个训练流程分别是什么,有什么作用
  8. 视觉编码器和 LLM 连接时,使用 BLIP2 中 Q-Former 那种复杂的 Adaptor 好还是 LLaVA 中简单的 MLP 好,说说各自的优缺点
  9. 代码:实现多头自注意力

一面比较常规,几乎都是八股问题,我觉得只要了解常见的多模态大模型都问题不大,主要还是要理解各个模型设计的动机是什么,这也是面试最喜欢考察的

二面

  1. 自我介绍和过项目,简要问了项目中使用某些方法的动机,以及是否会导致其他的问题
  2. 了解 Transformer 吗,编码器和解码器的注意力有什么区别,在计算注意力中时除以 d k \sqrt{d_k} dk 的原因是什么
  3. 后来有哪些比较经典的基于 Transformer 的语言模型,Qwen 相比于原始 Transformer 有哪些结构上的改动
  4. 了解 RLHF 吗,DPO 和 PPO 有什么区别,Loss 是什么样的,各自的优缺点是什么
  5. 介绍一下 CLIP,还了解什么其他的对比学习方法
  6. 开放题:了解哪些多模态大模型,目前多模态大模型最大的问题是什么
  7. 代码:1143. 最长公共子序列

二面其实也偏常规,几乎也都是八股问题,但是也考察了一些对模型的理解以及知识面的广度,整体来说比一面的难度大一些

三面

  1. 自我介绍,然后详细过了一下项目
  2. 了解哪些大模型和多模态大模型,然后就聊了大模型这一路是怎么发展过来的,Transformer、BERT、GPT、LLaMA、Qwen 这些,以及当时的 o1 推理模型
  3. 平常有尝试过训练过大模型吗,规模小一点的也没关系
  4. 聊天,包括职业规划等等

三面比较轻松,面试官说知识点前面两面都考察过了,三面就轻松一些,大概40来分钟吧

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值