最近春招和实习已开启了。
不同以往的是,当前职场环境已不再是那个双向奔赴时代了。求职者在变多,HC 在变少,岗位要求还更高了。
最近,我们又陆续整理了很多大厂的面试题,帮助一些球友解惑答疑,分享技术面试中的那些弯弯绕绕。
喜欢本文记得收藏、关注、点赞。
部门与岗位
淘天- 搜推智能产品事业部- 多模态大模型
总结
整体来说面试体验比较好,问的问题都不难,面试官也都不错,遇到一些卡壳的地方也会进行引导讨论,面试氛围很轻松。三面应该是加面的大老板面,从交流可以看出来对整个大模型这块的理解还是很深刻的,收获不小。
一面
- 首先是自我介绍和过项目,面试官还一起探讨项目用到的方法,可行性之类的
- 介绍一下 CLIP
- 了解 LoRA 吗,LoRA 微调的原理是什么
- 了解哪些多模态大模型,简要介绍几个
- BLIP 的三个损失函数分别是什么,数据是怎样清洗的
- BLIP2 相对于 BLIP 有哪些改进,BLIP3 又有哪些改进
- Qwen-VL 的三个训练流程分别是什么,有什么作用
- 视觉编码器和 LLM 连接时,使用 BLIP2 中 Q-Former 那种复杂的 Adaptor 好还是 LLaVA 中简单的 MLP 好,说说各自的优缺点
- 代码:实现多头自注意力
一面比较常规,几乎都是八股问题,我觉得只要了解常见的多模态大模型都问题不大,主要还是要理解各个模型设计的动机是什么,这也是面试最喜欢考察的
二面
- 自我介绍和过项目,简要问了项目中使用某些方法的动机,以及是否会导致其他的问题
- 了解 Transformer 吗,编码器和解码器的注意力有什么区别,在计算注意力中时除以 d k \sqrt{d_k} dk 的原因是什么
- 后来有哪些比较经典的基于 Transformer 的语言模型,Qwen 相比于原始 Transformer 有哪些结构上的改动
- 了解 RLHF 吗,DPO 和 PPO 有什么区别,Loss 是什么样的,各自的优缺点是什么
- 介绍一下 CLIP,还了解什么其他的对比学习方法
- 开放题:了解哪些多模态大模型,目前多模态大模型最大的问题是什么
- 代码:1143. 最长公共子序列
二面其实也偏常规,几乎也都是八股问题,但是也考察了一些对模型的理解以及知识面的广度,整体来说比一面的难度大一些
三面
- 自我介绍,然后详细过了一下项目
- 了解哪些大模型和多模态大模型,然后就聊了大模型这一路是怎么发展过来的,Transformer、BERT、GPT、LLaMA、Qwen 这些,以及当时的 o1 推理模型
- 平常有尝试过训练过大模型吗,规模小一点的也没关系
- 聊天,包括职业规划等等
三面比较轻松,面试官说知识点前面两面都考察过了,三面就轻松一些,大概40来分钟吧