节前,我们组织了一场算法岗技术&面试讨论会,邀请了一些互联网大厂朋友、今年参加社招和校招面试的同学。
针对大模型&多模态技术趋势、大模型落地项目经验分享、新手如何入门算法岗、该如何准备面试攻略、面试常考点等热门话题进行了深入的讨论。
总结链接如下:
喜欢本文记得收藏、关注、点赞。更多实战和面试交流,文末加入我们交流
大家好,今天分享我们星球一个球友4面字节智创多模态算法岗面经。
从一面到四面,可以清晰的感受到对知识的要求不能仅流于表面,一面二面考察知识面较广。
三面四面考察知识深度,面试官追着一个问题不断深挖,并且会有挖坑的提问。
一面
介绍自己 Diffusion 实习内容
QA:
- GAN 和 diffusion 的优势
- 为什么 GAN 不稳定
- 对大模型哪个比较熟悉, 那比如 DALL·E 2, 它怎么通过文本来实现对图像的控制?
- 了解 CLIP, GPT-4, miniGPT-4, LLaMA 吗
- CLIP 原理, 模型怎么训练的
- 讲解强化学习 PPO 模型
手撕部分:
爬楼梯最小消耗
二面
QA:
- stable diffusion, cross attention 怎么做的,文本怎么控制图像生成的,文本没有权重是怎么控制的?
- stable diffusion 不稳定的原因
- clip 是怎么提取文本,clip 的缺点
- lora原理, 训练, 推理过程中有额外计算吗
- ddpm 和 ddim 的关系
- self attention 和 cross attention 的区别
- 对 inpainting 了解吗?
- stable diffusion 生成结果怎么评价,定量指标
- stable diffusion 训练推理过程
- RL 中 policy-based 采样问题
- reward 的设计问题,Actor critic 怎么调参
手撕部分:
找数组的两峰
三面
仔细讲 2 个实习的算法模型,并提问
QA:
- Diffusion 采样方式都有哪些,DPM+/DPM++
- Pixel diffusion 有哪些
- 讲 Imagen
- 细致讲从 DALLE 1 如何发展到 DALLE 3,每个算法的核心原理,每次的创新是什么
- 追算法原论文
手撕部分:
字符串最长的无重复字符的最长子串
四面
讲一个认为最 solid 的实习
QA:
- 推 DDPM 公式
- 讲解 PPO 算法,推公式
- 对 image verification 怎么做,输入是图片的话,mid journey 可以调整下一步图片
- PyTorch 中 nn.eval 函数和训练的区别,BN,dropout 训练和测试的区别
精选
- 轻松构建聊天机器人,大模型 RAG 有了更强大的AI检索器
- 一文搞懂大模型训练加速框架 DeepSpeed 的使用方法!
- 保姆级学习指南:《Pytorch 实战宝典》来了
- MoE 大模型的前世今生
- 从零解读 SAM(Segment Anything Model)
- AI 绘画爆火背后:扩散模型原理及实现
- 从零开始构建和训练生成对抗网络(GAN)模型
- CLIP/LLaVA/LLaVA1.5/VILA 模型全面梳理!
- 从零开始创建一个小规模的稳定扩散模型!
- Stable Diffusion 模型:LDM、SD 1.0, 1.5, 2.0、SDXL、SDXL-Turbo 等
- 文生图模型:AE、VAE、VQ-VAE、VQ-GAN、DALL-E 等 8 模型
- 一文搞懂 BERT(基于Transformer的双向编码器)
- 一文搞懂 GPT(Generative Pre-trained Transformer)
- 一文搞懂 ViT(Vision Transformer)
- 一文搞懂 Transformer
- 一文搞懂 Attention(注意力)机制
- 一文搞懂 Self-Attention 和 Multi-Head Attention
- 一文搞懂 Embedding(嵌入)
- 一文搞懂 Encoder-Decoder(编码器-解码器)