字节大模型算法岗面试,问的贼细!

节前,我们组织了一场算法岗技术&面试讨论会,邀请了一些互联网大厂朋友、今年参加社招和校招面试的同学。

针对大模型&多模态技术趋势、大模型落地项目经验分享、新手如何入门算法岗、该如何准备面试攻略、面试常考点等热门话题进行了深入的讨论。

总结链接如下:

《大模型面试宝典》(2024版) 正式发布!

喜欢本文记得收藏、关注、点赞。更多实战和面试交流,文末加入我们交流


大家好,今天分享我们星球一个球友4面字节智创多模态算法岗面经。

从一面到四面,可以清晰的感受到对知识的要求不能仅流于表面,一面二面考察知识面较广。

三面四面考察知识深度,面试官追着一个问题不断深挖,并且会有挖坑的提问。

一面

介绍自己 Diffusion 实习内容

QA:

  1. GAN 和 diffusion 的优势
  2. 为什么 GAN 不稳定
  3. 对大模型哪个比较熟悉, 那比如 DALL·E 2, 它怎么通过文本来实现对图像的控制?
  4. 了解 CLIP, GPT-4, miniGPT-4, LLaMA 吗
  5. CLIP 原理, 模型怎么训练的
  6. 讲解强化学习 PPO 模型

手撕部分:

爬楼梯最小消耗

二面

QA:

  1. stable diffusion, cross attention 怎么做的,文本怎么控制图像生成的,文本没有权重是怎么控制的?
  2. stable diffusion 不稳定的原因
  3. clip 是怎么提取文本,clip 的缺点
  4. lora原理, 训练, 推理过程中有额外计算吗
  5. ddpm 和 ddim 的关系
  6. self attention 和 cross attention 的区别
  7. 对 inpainting 了解吗?
  8. stable diffusion 生成结果怎么评价,定量指标
  9. stable diffusion 训练推理过程
  10. RL 中 policy-based 采样问题
  11. reward 的设计问题,Actor critic 怎么调参

手撕部分:

找数组的两峰

三面

仔细讲 2 个实习的算法模型,并提问

QA:

  1. Diffusion 采样方式都有哪些,DPM+/DPM++
  2. Pixel diffusion 有哪些
  3. 讲 Imagen
  4. 细致讲从 DALLE 1 如何发展到 DALLE 3,每个算法的核心原理,每次的创新是什么
  5. 追算法原论文

手撕部分:

字符串最长的无重复字符的最长子串

四面

讲一个认为最 solid 的实习

QA:

  1. 推 DDPM 公式
  2. 讲解 PPO 算法,推公式
  3. 对 image verification 怎么做,输入是图片的话,mid journey 可以调整下一步图片
  4. PyTorch 中 nn.eval 函数和训练的区别,BN,dropout 训练和测试的区别

精选

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值