大模型的api封装与本地端口调用(一)——openai实现

一、初步接触api

在llama-factory的src文件夹中,我们发现了api.py文件,因此我们在终端直接执行api.py

通过本地的SSH隧道,我们能够在本地的6006端口进行api的访问,通过了解,这个是利用llama-factory中提供的包来实现的,且其中的模型为llama-factory本地提供的模型,通过资料查询,没能够获得如何针对本地模型使用。

api.py代码:

# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS"
### OpenAI大模型标准规范 OpenAI大模型标准规范主要体现在其对外发布的“模型规范”文档中,这文档不仅定义了API接口和ChatGPT系列产品的行为模式,同时也作为超级对齐团队的核心准则被严格遵循[^2]。此规范旨在提供清晰的指导方针,用于训练和优化基于人类反馈的强化学习(RLHF)模型,并期望未来能够通过这些规范直接提升模型的学习能力[^3]。 #### 模型规范的主要内容 1. **行为定义** “模型规范”详细描述了OpenAI希望其模型在不同场景下的表现形式,包括但不限于对话理解、上下文推理以及伦理决策等方面的能力。这种标准化的行为框架有助于确保模型致性和可靠性。 2. **RESTful API设计原则** OpenAI采用的是基于RESTful架构风格的API接口规范,支持多种主流语言模型如`gpt-3.5-turbo`和`gpt-4`等。开发者可以通过指定URL路径并附带必要的参数来实现模型之间的高效通信[^5]。 3. **身份验证机制** 所有的请求都需要携带有效的API密钥,在HTTP头部设置为`Authorization: Bearer <your-api-key>`的形式完成认证过程。 4. **适用范围扩展** 不仅限于自家产品线内的应用,“模型规范”同样适用于那些声称兼容此类技术标准的第三方开发人员所构建的语言处理工具——只需针对具体环境做出细微调整即可无缝对接[^4]。 #### 实际操作中的体现 为了便于理解和实践上述理论概念,下面给出段简单的Python代码示例展示如何利用官方提供的SDK库发起次基础查询: ```python import openai # 初始化配置 openai.api_key = 'YOUR_API_KEY' def generate_text(prompt, model="gpt-3.5-turbo"): response = openai.ChatCompletion.create( model=model, messages=[{"role": "user", "content": prompt}, {"role": "assistant", "content": ""}] ) return response['choices'][0]['message']['content'] if __name__ == "__main__": result = generate_text("What is the capital of France?") print(result) ``` 以上脚本展示了怎样借助预设好的函数快速生成段关于法国首都问题的回答数据流。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值