模型地址:https://huggingface.co/jhgan/ko-sroberta-multitask
目录
-
数据准备阶段
推荐数据格式:
# 句子对格式(语义相似度任务)
samples = [
("문장1", "문장2", 0.8), # 相似度得分
("한국어 문장", "다른 한국어 문장", 0.3)
]
# 三元组格式(信息检索任务)
triplets = [
(anchor, positive, negative),
("질문", "정답문장", "오답문장")
]
# 带标签分类格式
labeled_data = [
("문장", 2), # 类别标签
("다른 문장", 5)
]
-
特殊韩语处理技巧
使用Mecab-ko分词器提升处理效果
添加自定义停用词表(敬语、助词处理)
处理韩语复合助词形态(예: -에서처럼, -처럼에서)
-
模型加载与配置
使用jhgan/ko-sroberta-multitask
韩语预训练模型
实现本地缓存机制提高效率
适合韩语语义相似度任务
# 加载预训练模型和分词器
local_model_dir = "/path/to/local/model"#本地模型文件
if not os.path.exists(local_model_dir):
# 如果本地没有模型文件,从HuggingFace下载韩语多任务模型
model = AutoModel.from_pretrained("jhgan/ko-sroberta-multitask")
tokenizer = AutoTokenizer.from_pretrained("jhgan/ko-sroberta-multitask")
# 本地保存避免重复下载
model.save_pretrained(local_model_dir)
tokenizer.save_pretrained(local_model_dir)
else:
# 使用本地缓存模型
model = AutoModel.from_pretrained(local_model_dir)
tokenizer = AutoTokenizer.from_pretrained(local_model_dir)
核心池化策略:
注意力加权:通过掩码排除填充token的影响
数值稳定:torch.clamp
防止除零错误
输出维度:[batch_size, embedding_dim]
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] # 获取token级嵌入
# 扩展注意力掩码匹配嵌入维度
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
# 加权平均计算(忽略padding)
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
-
损失函数选择指南
# 对比损失(句子对)
from sentence_transformers import losses
train_loss = losses.CosineSimilarityLoss(model)
# 三重损失(三元组)
train_loss = losses.TripletLoss(model)
# 自定义混合损失
class HybridLoss(nn.Module):
def __init__(self, alpha=0.7):
super().__init__()
self.cos_loss = nn.CosineEmbeddingLoss()
self.kl_loss = nn.KLDivLoss()
self.alpha = alpha
def forward(self, emb1, emb2, labels):
...
-
进阶训练配置
for epoch in range(10):
batch_losses = []
for batch in dataloader:
# ... 训练步骤 ...
batch_losses.append(loss.item())
# 可视化跟踪
avg_loss = sum(batch_losses) / len(batch_losses)
epoch_losses.append(avg_loss)
print(f"Epoch {epoch+1} Average Loss: {avg_loss}")
# 绘制损失曲线
plt.plot(range(1, 11), epoch_losses, marker='o')
plt.xlabel('Epoch')
plt.ylabel('MSE Loss')
plt.title('微调训练损失曲线')
plt.grid(True)
plt.show()
10个epoch训练周期
小批量(size=2)梯度更新
实时损失可视化监控
-
评估与优化策略
使用KorSTS、KLUE-STS基准测试
动态阈值调整方法:
def find_optimal_threshold(embeddings, labels):
thresholds = np.linspace(0.5, 1.0, 100)
best_acc = 0
best_thresh = 0.7
for thresh in thresholds:
preds = (cos_sim > thresh).astype(int)
acc = accuracy_score(labels, preds)
if acc > best_acc:
best_acc = acc
best_thresh = thresh
return best_thresh
微调模型的保存与应用:
finetuned_dir = "/path/to/finetuned_model"
model.save_pretrained(finetuned_dir)
tokenizer.save_pretrained(finetuned_dir)
技术亮点总结:
-
语言适配:针对韩语优化的sRoBERTa架构
-
高效池化:注意力加权平均提升表征质量
-
相似度优化:余弦距离直接作为回归目标
-
轻量微调:仅需少量样本(示例中batch_size=2)
-
训练可视化:实时监控模型收敛情况
-
即插即用:保存格式兼容HuggingFace生态
建议应用场景:韩语问答系统/推荐系统/语义搜索等需要细粒度语义理解的任务
这种微调方式使模型适应特定领域的语义空间分布,相比原始预训练模型,在目标任务的嵌入质量可提升15-30%(取决于训练数据质量)。