NLP学习路线图(二十九):BERT及其变体

在自然语言处理(NLP)领域,一场静默的革命始于2017年。当谷歌研究者发表《Attention is All You Need》时,很少有人预料到其中提出的Transformer架构会彻底颠覆NLP的发展轨迹,更催生了以GPT系列为代表的语言模型风暴,重新定义了人类与机器的交互方式。

一、传统NLP的瓶颈:Transformer的诞生背景

在Transformer出现之前,NLP领域长期被两大架构主导:

  1. RNN(循环神经网络):擅长序列处理但存在梯度消失问题,难以捕捉长距离依赖

  2. CNN(卷积神经网络):并行效率高但难以建模全局位置关系

核心痛点:传统模型在处理长文本时效率低下,且严重依赖监督数据和人工特征工程。例如机器翻译需要复杂的编码器-解码器结构和对齐机制。


二、Transformer架构解析:注意力机制的革命

### 图模型与BERT MASK LM训练方法的异同点 #### 1. 训练目标上的差异 图模型通常用于捕捉节点之间复杂的依赖关系,其核心在于学习节点嵌入以及边的关系。相比之下,BERT的MASK LM训练方式主要是为了通过遮蔽部分词并预测它们来学习上下文表示[^1]。因此,两者的训练目标存在本质区别:图模型关注于结构化数据中的拓扑关系,而BERT则更侧重于线性序列中的语义信息。 #### 2. 输入表示的不同 在图神经网络(GNNs)中,输入通常是图形结构的数据集,包括节点属性和边连接矩阵;而在BERT中,输入是一个经过特殊处理的一维文本向量序列,其中某些位置会被替换为[MASK]标记以供后续恢复任务使用[^4]。这意味着两者接受的信息形式截然不同——一个是二维甚至更高维度的空间分布,另一个则是简单的字符串排列组合。 #### 3. 上下文感知机制对比 尽管二者都试图理解各自领域内的“环境”影响因素,但实现手段各异。对于大多数类型的GNN来说,消息传递框架允许每个顶点接收来自邻居的消息并通过聚合操作更新自己的状态;而对于采用DAE LM策略构建起来的标准版BERT而言,则依靠双向Transformer编码器架构直接获取整个句子范围内任意两个词语间的相互作用情况[^2]。由此可见,在如何有效建模全局范围内的交互方面,这两种技术路线采取了完全不同的路径设计哲学。 #### 应用场景分析 - **图模型的应用** - 社交媒体分析:挖掘社交平台用户间潜在联系。 - 推荐系统优化:增强商品关联推荐准确性。 - 生物化学研究:解析蛋白质折叠规律或者药物分子合成可能性评估等问题解决过程中发挥重要作用。 - **BERT及其变体适用场合** - 自然语言处理基础任务如命名实体识别(NER),情感分类等。 - 文本生成相关工作例如摘要制作、机器翻译等领域表现优异。 - 泛化能力强使得它可以轻松迁移至众多定制化的NLP子方向上去完成特定需求下的性能提升使命。 ```python import torch from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertModel.from_pretrained("bert-base-uncased") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') with torch.no_grad(): output = model(**encoded_input) print(output.last_hidden_state) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值