在自然语言处理(NLP)领域,一场静默的革命始于2017年。当谷歌研究者发表《Attention is All You Need》时,很少有人预料到其中提出的Transformer架构会彻底颠覆NLP的发展轨迹,更催生了以GPT系列为代表的语言模型风暴,重新定义了人类与机器的交互方式。
一、传统NLP的瓶颈:Transformer的诞生背景
在Transformer出现之前,NLP领域长期被两大架构主导:
-
RNN(循环神经网络):擅长序列处理但存在梯度消失问题,难以捕捉长距离依赖
-
CNN(卷积神经网络):并行效率高但难以建模全局位置关系
核心痛点:传统模型在处理长文本时效率低下,且严重依赖监督数据和人工特征工程。例如机器翻译需要复杂的编码器-解码器结构和对齐机制。