目录
💥1 概述
滚动轴承故障检测方法一般包括温度分析、油液分析以及振动信号检测等,通过不同的传感器的信号表现形式可以从不同角度分析轴承故障,通过多种方法的结合运用可以更加准确地判断轴承
故障。
本文可用于在匀速运行的滚动轴承中进行基于振动的故障诊断。
这是一个三步程序:(i)倒谱预白化:
减少其他周期性来源(如齿轮)的贡献。
(ii) 带通滤波:提高信噪比,特别是当对系统共振执行时 (iii) 平方包络频谱:允许检测
(伪)循环稳态贡献,其特征是在特定循环频率下具有大分量
此功能与一个简单的演示一起提供,并且与倍频程完全兼容。
基于振动的故障诊断是轴承故障检测中常用的方法之一。滚动轴承常常在工业机械中扮演重要角色,因此对其进行故障诊断是至关重要的。
以下是基于振动的故障诊断在滚动轴承中的研究内容和方法:
1. 故障特征提取:通过振动传感器采集滚动轴承的振动信号。研究者通常侧重于提取与故障相关的振动特征,例如频率分析、振动幅值、包络分析、峭度等。这些特征可以揭示轴承在不同故障情况下的振动特性。
2. 故障模式分析:研究人员对不同类型的轴承故障进行分析和研究。常见的轴承故障包括滚珠损伤、内外圈裂纹、轴承松动等。通过比对不同故障模式下的振动特征,可以建立起特定故障模式与特定振动特征之间的关联性。
3. 信号处理和特征提取算法:针对滚动轴承振动信号的特点,研究人员开发了多种信号处理算法,如傅里叶变换、小波变换和时频分析等。这些算法能够从复杂的振动信号中提取出有用的故障特征。
4. 故障诊断方法:在滚动轴承故障诊断中,常用的方法包括模式识别、机器学习和人工智能等。基于提取的振动特征,可以采用这些方法建立分类模型,以实现自动化的故障诊断。
5. 实时监测系统:研究人员还致力于开发实时的轴承故障监测系统,以便随时检测和预警轴承故障。这些系统结合了振动传感器、信号处理算法和自动诊断技术,能够实时监测轴承健康状态并提供报警信号。
上述研究内容和方法为基于振动的故障诊断在滚动轴承中的应用提供了一些基础。需要指出的是,故障诊断研究是一个不断发展的领域,需要根据实际情况选择适合的方法,结合多种技术手段进行综合分析,以提高故障检测的准确性和可靠性。
📚2 运行结果
部分代码:
function [xSES,alpha,th] = SES(x,fs,bpf,plotFlag,p,cpswFlag)
%% Estimation of the Squared Envelope Spectrum
% this function can be used for detecting bearing faults under constant
% working speed
%
% INPUTS
% x = input signal
% fs = sampling frequency
% bpf = band-pass filter frequencies, use a vector as [f lower, f higher]
% put and empty vector if band-pass filtering is not needed
% bearing fault detection can be improved if performed in a frequency band
% wher the SNR is high (typically about a system resonance)
% plotFlag = display the SES, 0 -> no (default), 1 -> yes
% p = threshold significance level, default p = .999 (99.9%)
% cpswFlag = cesptrum pre-whitening, 0 -> no (default), 1 -> yes
% bearing fault detection is affected by periodic contribution due to
% external sources such as gears. This effect can be reduced by whitening
% the signal before SES
%
% OUTPUTS
% SES = squared envelope spectrum
% alpha = cyclic frequencies
% th = threshold
%
% REF: Borghesani P. et al, Application of cepstrum pre-whitening for the diagnosis of bearing
% faults under variable speed conditions, MSSP, 2013.
%
% M. Buzzoni
% May 2019
if nargin < 4
plotFlag = 0;
p = .999;
cpswFlag = 0;
end
if nargin < 5
p = .999;
cpswFlag = 0;
end
if nargin < 6
cpswFlag = 0;
end
L = length(x);
k = (0:L-1);
% cepstrum pre-whitening
if cpswFlag == 1;
x = real(ifft(fft(x) ./ abs(fft(x))));
end
% band-pass filtering and ses estimation
if isempty(bpf)
l = 1
h = floor(L/2)+1;
wfilt = zeros(size(x)); wfilt(l:h) = 1;
xf = ifft(2 .* fft(x) .* wfilt); % filtered analytic signal
else
l = floor(bpf(1)*L/fs); % lower freq. index
h = floor(bpf(2)*L/fs); % higher freq. index
wfilt = zeros(size(x)); wfilt(l:h) = 1;
xf = ifft(2 .* fft(x) .* wfilt); % filtered analytic signal
end
ENV = abs(xf).^2; % squared envelope
xSES = abs(1/L .* fft( ENV )) .^ 2; % squared envelope spectrum
% threshold
S0 = (h - l - k) ./ (2 * (h - l)^2 ) .* (mean(abs(xf).^2)).^2;
th = chi2inv(p,2) .* S0;
% keep only meaningful cyclic frequencies
alpha = k .* fs ./ L; % cyclic frequencies vector
alpha = alpha(1:h - l);
xSES = xSES(1:h - l); xSES(1) = 0; % put to zero the DC-term of SES in order to
th = th(1:h - l); % improve its visualization
if plotFlag == 1
% display results
tt = k ./ fs; % time vector
figure
subplot(211)
plot(tt,ENV,'k')
title('squared envelope')
xlabel('time (s)')
box off
subplot(212)
plot(alpha,xSES,'k')
title('squared envelope spectrum')
hold on, plot(alpha,th,'r')
legend('SES',[num2str(p .* 100) '% threhsold' ])
xlabel('cyclic frequency (Hz)')
box off
end
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。
[1]刁宁昆. 滚动轴承故障检测的无监督学习方法研究[D].石家庄铁道大学,2022.DOI:10.27334/d.cnki.gstdy.2022.000368.
[2]Borghesani P. et al, Application of cepstrum pre-whitening for the diagnosis of bearing faults under variable speed conditions, MSSP, 2013.