💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
如今,多目标优化技术广泛应用于:机械工程、土木工程和化工等研究领域。早期的多目标随机优
化算法多为单目标优化算法转化而来,例如:SPEA[7]、NSGA-Ⅱ[8]、MOPSO[9]和 MOEA/D[10]等应用广泛的优化算法。文献[11]提出了一种基于灰狼优化 算 法 (GWO) 提 出 的 多 目 标 灰 狼 优 化 算 法 (MOGWO),该算法具有收敛快、实现简单的特点,并且在多目标基准测试函数中表现出优于 MOPSO和 MOEA/D 的性能,具有应用推广的潜力。然而,相同的优化算法在不同的实际问题中的优化性能无 法得到保证,其在微电网多目标优化问题的适用性尚待验证。
目前大多数优化问题为高度复杂和多约束的非线性问题,尤其是微电网的优化调度问题.传统方
法在处理上述优化问题时容易陷入局部最优或者维数灾难.随着智能算法的提出上述问题得到了较好解决.文献[2]提出一种混合蝙蝠算法来处理结合热发电机和风力涡轮机的经济调度问题.文献[3]提出一种多层次的蚁群算法解决微电网的能量调度问题.文献[4]用重力搜索算法解决经济与环境负荷调度问题.文献[5]提出一种量子粒子群算法来解决考虑风电不确定性与碳税的经济调度问题.
微电网模型主要包括发电侧和需求侧.发电侧包括柴油发电机、可再生能源和储能电池,需求侧
为用户的需求响应.可再生能源包括风能系统和光伏系统.由于风机和光伏阵列的输出功率具有不确定性,因此不能进行直接调度,只能根据气候等条件对其输出功率进行建模预测.
灰狼优化算法是 Mirjalili 等[13]受狼群合作捕食过程启发而提出的新型群体智能优化算法。2015 年,又 在 此 基 础 上 提 出 了 多 目 标 灰 狼 优 化 算 法 (MOGWO)。灰狼群可分为四个阶层,分别为、和。灰狼优化算法就是参考灰狼的捕食过程建立的。在灰狼优化算法中
将每次迭代中目标函数值最优的三个位置依次分配给、和,其余个体根据这三个最优个体位置更新自己的位置。相较于 GWO,MOGWO 中引入了外部种群 Archive 并对、和的
选择策略进行了改动。Archive 用于储存每一代产生的优秀个体,即非支配解。并且按照一定的策略进行更新和删除。MOGWO 算法直接从 Archive 采用轮盘赌的方式选择三只优秀个体作为、和。最终,外部种群 Archive 中的个体即为优化问题的一组Pareto 最优解。
【微电网调度】考虑需求响应的基于改进多目标灰狼算法的微电网优化调度研究,这一研究主题聚焦于如何在微电网的优化调度过程中有效融入需求响应机制,并采用改进的多目标灰狼优化算法(IMOGWO)来解决调度难题。以下是对此研究主题的深入分析:
研究背景
微电网作为一种高度集成的分布式能源系统,集成了可再生能源发电(如风能、太阳能)、储能设备、传统发电机组和负荷等多种组件。在面对可再生能源的间歇性和不确定性时,有效的调度策略对于确保微电网的经济性、可靠性和环境友好性至关重要。需求响应(Demand Response, DR)作为一种主动管理负荷侧需求以适应供应变化的策略,允许用户根据价格信号、激励措施或其他形式的激励调整其用电行为,从而为系统调度提供额外的灵活性。
考虑需求响应
在微电网调度中整合需求响应,意味着需要实时或准实时地考虑用户的用电弹性,通过调整负荷曲线来匹配供应变化,减少峰谷差,提高电网运行效率。这要求优化模型不仅要考虑发电和储能的调度,还要精细模拟用户响应不同激励策略下的负荷变化,从而在确保用户舒适度的同时优化整个系统的运行。
改进多目标灰狼优化算法的应用
IMOGWO算法在该领域的应用,旨在寻找一组最优或近似最优解,以同时满足多种相互冲突的目标,如成本最小化、能源消耗最优化、排放减量化以及用户满意度最大化等。通过引入改进策略,如自适应权重调整、种群多样性维护机制等,IMOGWO能更有效地探索和利用解空间,处理微电网调度中的复杂性和不确定性,尤其是在考虑需求响应的动态性和多样性时。
研究方法与挑战
研究方法通常包括:建立微电网的数学模型,其中包含各类发电资源、储能设备、负荷需求以及DR机制;设计适应需求响应特性的多目标优化函数;实施改进的多目标灰狼优化算法求解,寻找最佳调度策略。面临的挑战包括需求响应数据的获取与预测准确性、用户行为的不确定性、以及算法的计算效率与收敛性能。
研究意义
此研究对于推动微电网的智能化管理和运行、提高能源利用效率、促进可再生能源的更大规模集成具有重要价值。通过高效调度机制,微电网可以更好地应对供需不平衡,减少对外部电网的依赖,提升能源安全与自给自足能力。此外,鼓励用户参与需求响应还有助于培育用户节能意识,构建更加互动、灵活的能源消费市场。
📚2 运行结果
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。
[1]戚艳,尚学军,聂靖宇,霍现旭,邬斌扬,苏万华.基于改进多目标灰狼算法的冷热电联供型微电网运行优化[J].电测与仪表,2022,59(06):12-19+52.DOI:10.19753/j.issn1001-1390.2022.06.002.
[2]沈艳军,杨博.需求响应的微电网优化调度及改进的蝙蝠算法[J].华中科技大学学报(自然科学版),2020,48(02):120-125.DOI:10.13245/j.hust.200221.