【图像分类】基于LIME的CNN 图像分类研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

LIME工作原理

应用于CNN图像分类

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现



💥1 概述

基于LIME(Local Interpretable Model-Agnostic Explanations)的CNN图像分类研究是一种用于解释CNN模型的方法。LIME是一种解释性模型,旨在提供对黑盒模型(如CNN)预测结果的可解释性。求解步骤分为5步:

1. 数据准备:首先,准备一个用于图像分类的数据集,该数据集应包含图像样本和相应的标签。可以使用已有的公开数据集,如MNIST、CIFAR-10或ImageNet。

2. 训练CNN模型:使用准备好的数据集训练一个CNN模型。可以选择常见的CNN架构,如VGG、ResNet或Inception等,或者根据具体需求设计自定义的CNN架构。

3. 解释模型的预测结果:使用LIME方法来解释CNN模型的预测结果。LIME采用局部特征解释方法,在图像中随机生成一组可解释的超像素,并对这些超像素进行采样。然后,将这些采样结果输入到CNN模型中,计算预测结果。

4. 生成解释性结果:根据LIME采样的结果,计算每个超像素对预测结果的影响程度。可以使用不同的解释性度量,如权重、重要性分数或热图等。

5. 分析和验证结果:对生成的解释性结果进行分析和验证。可以通过与真实标签进行对比或与其他解释方法进行比较,来评估LIME方法的准确性和可靠性。

通过以上步骤,可以实现对CNN图像分类模型的解释性研究。LIME方法可以帮助我们理解CNN模型在图像分类任务中的决策过程,对于深入了解CNN模型的特征选择和预测行为非常有帮助。

LIME(Local Interpretable Model-agnostic Explanations)是一种模型无关的局部可解释方法,旨在解释机器学习模型(特别是黑盒模型)的预测结果。将其应用于基于卷积神经网络(Convolutional Neural Networks, CNN)的图像分类任务中,LIME能够帮助我们理解CNN模型是如何基于图像的特定部分做出分类决策的,这对于提高模型透明度、验证模型可靠性以及发现潜在偏见等方面具有重要作用。

LIME工作原理

LIME的核心思想是通过生成大量输入数据的局部变异版本,并观察模型预测的变化来解释单个预测。对于图像分类任务来说,这意味着对原图像进行微小扰动,如像素遮盖、轻微改变颜色或纹理等,然后询问CNN模型这些变化后的图像属于各个类别的概率,并利用这些信息构建一个简洁的可解释模型(如线性模型),来近似局部区域内的CNN决策逻辑。这个可解释模型揭示了哪些图像区域对最终分类决策贡献最大。

应用于CNN图像分类

  1. 生成解释:给定一张待解释的图像,LIME首先会对其进行扰动处理,产生一系列变体图像。这些变体图像被输入到CNN模型中,收集它们的分类概率。之后,LIME根据CNN的响应和变体图像与原始图像的差异程度,权衡每个变体对解释模型的重要性。

  2. 可视化重要区域:LIME最终会生成一个“热力图”,突出显示图像中对分类决策最为关键的区域。亮色区域表示对当前分类预测影响最大的像素位置,暗色区域则表示影响较小。通过这种方式,研究者可以直接看到哪些图像特征(如物体的特定部位)对于CNN模型做出特定分类最为关键。

  3. 增强信任与调试:对于研究者和用户而言,理解CNN如何基于图像内容做出决策非常重要。LIME提供的局部解释可以提升用户对模型决策的信任度,同时也能帮助研究人员发现模型的潜在偏见或错误,进而进行针对性的改进。

  4. 促进模型优化:通过LIME分析,研究者可以了解到模型可能忽视或误解的关键特征,从而指导模型架构的调整或训练数据的增强,提升整体分类性能。

综上所述,将LIME应用于CNN图像分类研究,不仅提升了模型的可解释性和透明度,还为模型的验证、调试以及优化提供了有力工具,是促进人工智能领域健康发展的重要方法之一。

📚2 运行结果

result=zeros(size(L));
for i=1:N
    ROI=L==i;
    result=result+ROI.*max(mdl.Beta(i),0);% calculate the contribution if the weight is non-zero
end

% smoothing the LIME result. this is not included in the official
% implementation
result2=imgaussfilt(result,8);
% display the final result
figure;imshow(I);hold on
imagesc(result2,'AlphaData',0.5);
colormap jet;colorbar;hold off;
title("Explanation using LIME");

 部分代码:

%% Sampling for Local Exploration
% This section creates pertubated image as shown below. Each superpixel was 
% assigned 0 or 1 where the superpixel with 1 is displayed and otherwise colored 
% by black.  

% the number of the process to make perturbated images
% higher number of sampleNum leads to more reliable result with higher
% computation cost
sampleNum=1000;
% calculate similarity with the original image
similarity=zeros(sampleNum,1);
indices=zeros(sampleNum,N);
img=zeros(224,224,3,sampleNum);
for i=1:sampleNum
    % randomly black-out the superpixels
    ind=rand(N,1)>rand(1)*.8;
    map=zeros(size(I,1:2));
    for j=[find(ind==1)]'
        ROI=L==j;
        map=ROI+map;
    end  
    img(:,:,:,i)=imresize(I.*uint8(map),[224 224]);
    % calculate the similarity
    % other metrics for calculating similarity are also fine
    % this calculation also affetcts to the result
    similarity(i)=1-nnz(ind)./numSuperPixel;
    indices(i,:)=ind;   
end
%% Predict the perturbated images using CNN model to interpret
% Use |activations| function to explore the classification score for cat. 

prob=activations(net,uint8(img),'prob','OutputAs','rows');
score=prob(:,classIdx);
%% Fitting using weighted linear model
% Use fitrlinear function to perform weighted linear fitting. Specify the weight 
% like 'Weights',similarity. The input indices represents 1 or 0. For example, 
% if the value of the variable "indices" is [1 0 1] , the first and third superpixels 
% are active and second superpixel is masked by black. The label to predict is 
% the score with each perturbated image. Note that this similarity was calculated 
% using Kernel function in the original paper. 

sigma=.35;
weights=exp(-similarity.^2/(sigma.^2));
mdl=fitrlinear(indices,score,'Learner','leastsquares','Weights',weights);
%% 
% Confirm the exponential kernel used for the weighting. 

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1] Ribeiro, M.T., Singh, S. and Guestrin, C., 2016, August. " Why should 
I trust you?" Explaining the predictions of any classifier. In _Proceedings 
of the 22nd ACM SIGKDD international conference on knowledge discovery and data 
mining_ (pp. 1135-1144).

[2] He, K., Zhang, X., Ren, S. and Sun, J., 2016. Deep residual learning for 
image recognition. In _Proceedings of the IEEE conference on computer vision 
and pattern recognition_ (pp. 770-778).
 

🌈4 Matlab代码实现

  • 12
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
LIME(Local Interpretable Model-Agnostic Explanations)是一种解释模型的方法,它可以帮助我们理解模型如何做出预测。在图像领域,LIME可以用于图像增强。下面是使用MATLAB实现LIME图像增强的一般步骤: 1. 读取图像并将其转换为灰度图像。 ``` img = imread('image.jpg'); gray_img = rgb2gray(img); ``` 2. 将灰度图像分割成多个小块(例如16x16像素)。 ``` block_size = 16; [num_rows, num_cols] = size(gray_img); num_row_blocks = floor(num_rows/block_size); num_col_blocks = floor(num_cols/block_size); blocks = cell(num_row_blocks, num_col_blocks); for row = 1:num_row_blocks for col = 1:num_col_blocks row_start = (row-1)*block_size+1; row_end = row*block_size; col_start = (col-1)*block_size+1; col_end = col*block_size; blocks{row, col} = gray_img(row_start:row_end, col_start:col_end); end end ``` 3. 对每个小块应用LIME方法,生成一个解释模型,并用该模型对该块进行增强。在这里,我们使用线性回归作为解释模型。 ``` num_samples = 500; kernel_width = 0.25; for row = 1:num_row_blocks for col = 1:num_col_blocks %生成随机样本 samples = generate_samples(blocks{row, col}, num_samples); %计算每个样本的权重 weights = calculate_weights(blocks{row, col}, samples, kernel_width); %使用线性回归建立解释模型 model = fitlm(samples, weights); %应用解释模型对该块进行增强 enhanced_block = apply_model(blocks{row, col}, model); blocks{row, col} = enhanced_block; end end ``` 4. 将增强后的小块合并成一个图像。 ``` enhanced_img = zeros(num_rows, num_cols); for row = 1:num_row_blocks for col = 1:num_col_blocks row_start = (row-1)*block_size+1; row_end = row*block_size; col_start = (col-1)*block_size+1; col_end = col*block_size; enhanced_img(row_start:row_end, col_start:col_end) = blocks{row, col}; end end ``` 完整代码如下所示: ``` %读取图像并将其转换为灰度图像 img = imread('image.jpg'); gray_img = rgb2gray(img); %将灰度图像分割成多个小块 block_size = 16; [num_rows, num_cols] = size(gray_img); num_row_blocks = floor(num_rows/block_size); num_col_blocks = floor(num_cols/block_size); blocks = cell(num_row_blocks, num_col_blocks); for row = 1:num_row_blocks for col = 1:num_col_blocks row_start = (row-1)*block_size+1; row_end = row*block_size; col_start = (col-1)*block_size+1; col_end = col*block_size; blocks{row, col} = gray_img(row_start:row_end, col_start:col_end); end end %对每个小块应用LIME方法,生成一个解释模型,并用该模型对该块进行增强 num_samples = 500; kernel_width = 0.25; for row = 1:num_row_blocks for col = 1:num_col_blocks %生成随机样本 samples = generate_samples(blocks{row, col}, num_samples); %计算每个样本的权重 weights = calculate_weights(blocks{row, col}, samples, kernel_width); %使用线性回归建立解释模型 model = fitlm(samples, weights); %应用解释模型对该块进行增强 enhanced_block = apply_model(blocks{row, col}, model); blocks{row, col} = enhanced_block; end end %将增强后的小块合并成一个图像 enhanced_img = zeros(num_rows, num_cols); for row = 1:num_row_blocks for col = 1:num_col_blocks row_start = (row-1)*block_size+1; row_end = row*block_size; col_start = (col-1)*block_size+1; col_end = col*block_size; enhanced_img(row_start:row_end, col_start:col_end) = blocks{row, col}; end end %显示增强后的图像 imshow(enhanced_img, []) ``` 需要注意的是,LIME方法中用到的generate_samples、calculate_weights和apply_model函数需要根据具体的实现进行编写。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值