💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
🌈4 Matlab代码、Simulink仿真、数据、文章下载
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
摘要
汽车行业正处于一场革命之中,越来越多的投资投入到电动动力单元,以取代当前和未来汽车中的内燃机。尽管续航焦虑是全球驾驶员大规模采用电动汽车的主要障碍,但汽车制造商仍高度重视驾驶性能,以确保从燃油汽车到电动汽车的过渡无缝衔接。驾驶性能是指汽车运行的平稳性,而在电动汽车中,电动传动系统产生的低频振动是导致不适感的根源。本文提出了多种控制策略,以在汽车运行过程中抑制人体感知到的低频振动。研究内容包括系统的动态建模、线性化、系统辨识、经典控制策略和先进控制策略。仿真结果展示了每种方法的有效性,并评估了控制器在抑制低频振动方面的性能。
1 引言
高性能电机具有固有的性能优势,但也给电动汽车的驾驶性能带来了独特的挑战。
高性能电机是高速和快速响应的部件,能够提升电动汽车的性能。这些部件深刻影响车辆的动态行为,导致在共振频率处出现高振幅振荡。这些振荡可能引发诸多问题,例如驾驶员不适、车轮打滑和部件疲劳。鉴于其重要性,有必要确定解决方案并激励团队开展相关工作。
由于车辆中高惯性部件的存在,观察到的振荡属于低频域(大约10赫兹)。机械阻尼器在抑制振荡方面的局限性促使团队设计一种反馈控制系统,通过调节电机转矩来缓解这一问题。加州大学伯克利分校的团队与行业合作伙伴通用汽车公司合作,共同制定了这一问题的解决方案。
2 前置理论
2.1 共振
当周期性力的频率与所作用系统的固有频率相匹配时,振幅会得到放大,这种现象称为共振。在共振频率下,系统的振荡幅度显著高于非共振频率下的振幅。观察者会注意到系统在共振时的响应幅度急剧增大。这种现象导致在共振频率处出现强烈的振动,我们的目标是设计一个能够在共振频率下成功降低振幅的控制器。如图12所示的开环伯德图行为,在9赫兹频率下,车辆的共振幅度为30分贝。目标是降低超调(峰值),并实现更平坦的闭环伯德图。以下公式定义了系统的超调百分比(Mp):
10 结论:
当有效控制电动机以减少传动系统中的振动时,从内燃机汽车切换到电动汽车的成本变得极为可行。
本文提出了多种控制方法,用于抑制电动汽车中高惯性旋转部件引起的纵向振动,以改善驾驶性能。我们首先对传动系统的动态特性进行了建模,以参数化共振频率及其相应的振幅。为了验证我们所建模型的准确性,我们将模型与我们在密歇根州通用汽车试验场收集的雪佛兰Bolt车辆数据进行了对比分析。我们还讨论了用于建模非线性粘性轮胎滑移的线性化技术。在验证了模型的准确性后,我们设计了经典和先进的控制策略以满足我们的设计规范。我们最成功的控制设计包括P控制器、PD控制器和线性二次调节器。通过适当的阻尼,我们能够在保持车辆关键响应的同时,减少纵向振动,从而提高驾驶员的舒适性。尽管我们成功设计了反馈控制策略,但将更多车辆组件(如齿轮间隙、时序延迟和传感器刷新率)纳入考虑将增加我们仿真的准确性,同时也会带来计算和时序复杂性的增加。进一步的研究和开发,以改善驾驶性能并结合电动汽车的固有优势,将有助于在全球范围内取代内燃机汽车。
详细文章下载见底第4部分。
📚2 运行结果
运行结果图比较多,就不一一展示。
部分代码:
function [LinearMatrix, EqPoints] = LinearForSim(VehicleSpeed,Tbrake,Tslope)
m = 3875*0.45359; % Vehicle Curb Weight in kg
r = 1 + 350/60; % Gear ratio
Jm = 0.038; % Moment of Inertia for Motor
ks = 120*57.3; % Half Shaft Stiffness in Nm/rad
bs = 10; % Half Shaft Damping in Nm/(rad*sec)
Jw = 4.0; % Moment of Inertia for Wheel Assembly
ksus = 700*57.3; % Suspension Stiffness in Nm/rad
bsus = 220; % Suspension Damping in Nm/(rad*sec)
rw = 0.32; % Wheel Radius
g = 9.81; % Acceleration due to gravity
% c1,c2,c3 are the coefficients for the friction coefficient calculation
c1 = 1.2801;
c2 = 23.99;
c3 = 0.52;
cd = 0.35; % Drag Coefficient
rho = 1.275; % Air Density (kg/m^3)
A = 1.75*1.56; % Cross-Sectional Area for Chevy Bolt m^2
vs = VehicleSpeed;
Tb = Tbrake;
Tslp = Tslope;
%% Define states and inputs which we need to solve
syms ms ws Ts Tsus Tm %(5 variables for 5 equations)
%% System of Equations
lambda = (ws-vs)/ws;
miu = c1*(1-exp(-c2*lambda))-c3*lambda;
eq1 = (Tm-1/r*(Ts+bs*(ms/r-ws)))/Jm;
eq2 = (Ts+bs*(ms/r-ws)-Tsus-bsus*(ws-vs)-m*g*rw*miu-Tb)/Jw;
eq3 = (m*g*rw*miu+Tsus+bsus*(ws-vs)-Tslp-0.5*rho*(vs*rw)^2*cd*A*rw)/(m*rw^2);
eq4 = ks*(ms/r-ws);
eq5 = ksus*(ws-vs);
equations = [eq1,eq2,eq3,eq4,eq5];
vars = [ms, ws, Ts, Tsus, Tm];
%% Find equlibrium points
eq = solve(equations==0,vars);
eqms = eq.ms;
eqws = eq.ws;
eqvs = vs;
eqTs = eq.Ts;
eqTsus = eq.Tsus;
eqTm = eq.Tm;
eqTslp = Tslp;
eqTb = Tb;
equlibrium = [eqms,eqws,eqvs,eqTs,eqTsus,eqTm,eqTslp,eqTb];
EqPoints = double(equlibrium)';
%% Redefine all the states and Inputs
syms ms ws vs Ts Tsus Tm Tslp Tb
%% Taylor series
% Redefine equations and variables to have them all in symbolic form
lambda = (ws-vs)/ws;
miu = c1*(1-exp(-c2*lambda))-c3*lambda;
eq1 = (Tm-1/r*(Ts+bs*(ms/r-ws)))/Jm;
eq2 = (Ts+bs*(ms/r-ws)-Tsus-bsus*(ws-vs)-m*g*rw*miu-Tb)/Jw;
eq3 = (m*g*rw*miu+Tsus+bsus*(ws-vs)-Tslp-0.5*rho*(vs*rw)^2*cd*A*rw)/(m*rw^2);
eq4 = ks*(ms/r-ws);
eq5 = ksus*(ws-vs);
equations = [eq1,eq2,eq3,eq4,eq5];
variables = [ms, ws, vs, Ts, Tsus, Tm, Tslp,Tb];
jacob = jacobian(equations, variables);
for i =1:5 % number of state
for j =1:8 % number of states+ number of inputs
LinearMatrix(i,j) = subs(jacob(i,j),variables,equlibrium);
end
end
end
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)
🌈4 Matlab代码、Simulink仿真、数据、文章下载
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取