大模型应用开发一:如何调用DeepSeek的api?_0门槛(如何调用大语言模型api来构建自己的服务?)

前言

AI大语言模型近两年非常火爆,笔者认为紧跟时代的步伐最好的方式是构建自己的AI项目,这样会把宏观的时代发展与自己的学习生活息息相关,不会错过每一次AI圈的完善更新,体会到与时代共发展的幸福感。

于是,笔者将持续推出AI大模型应用开发相关文章,帮助大家快速构建一个属于自己的AI项目,紧跟AI时代的脚步。

一.API概述

目前的ai厂商大致有两种服务,一种是直接在网页端对话,另一种是调用大模型的API(application interface,应用接口),集成到自己的服务,如网站、APP中进行赋能。

调用API的门槛不高,而且各大模型厂商都会有详细的调用说明和示例,这里仅针对没有任何编程经验的小白快速通过API与模型进行对话。

二.环境及DeepSeek API KEY准备

Python及环境库版本:

python>=3.11

python库:openai==0.28

编辑器:vscode(推荐)或者pycharm

DeepSeek api key申请方法:

  1. 进入官网:DeepSeek | 深度求索并且注册一个账号
  2. 点击右上方的API开放平台
  3. 点击左侧导航栏的API keys
  4. 点击下方的创建api keys

        5.这时候你会看到你的api key,这个只会显示一次,所以你可以将这个完整的key保存到记事本中

注意/额外说明:

1.python的安装方法在B站找一个播放量最高的视频,前两集半小时左右的时间就会详细教怎么配置python环境以及怎么下载安装编辑器如vscode,这里不再赘述。在编辑器终端打印出一下的“hello world”字样代表环境配置成功!(python版本尽量选择与笔者一致的3.11版本)

2.最新版openai库与摒弃了较旧的调用方式,这里笔者个人习惯,所以建议与笔者保持一致。安装后python后,在终端输入pip install openai==0.28,等待下载完成即可。(第一次使用python下载python库较慢,因为官方下载源在国外,建议更换国内的下载渠道,参考链接配置pip清华镜像源-CSDN博客

3.调用大语言模型的api key是需要钱的,计费方式按照tokens(可以简单理解为一个文字算一个token),deepseek的计价可以区官网查看(特别便宜!),新账号注册还会赠送一个月10元的额度。

三.编写代码

import openai


openai.api_key = "sk-2cc2****************77"
openai.api_base= "https://api.deepseek.com"


prompt = [
    {"role":"user","content":""}
]

def chat_with_llm(user_input):
    prompt[0]["content"]= user_input
    try:
        response = openai.ChatCompletion.create(
            model = "deepseek-chat",
            messages = prompt,
            temperature=0.7
        )
        return response.choices[0].message.content
    except Exception as e:
        return f"发生错误: {str(e)}"


while True:
    print("小崔:",end="")
    user_input = input()
    response = chat_with_llm(user_input)
    print("AI助手:"+response)

将以上代码粘贴到你的Vscode中,其中的

openai.api_key = "sk-2cc2****************77"

这里引号里的部分更换成自己刚才申请的api key即可。如下,输出你的问题并且按下回车,看到AI的输出内容就代表你成功调用了deepseek的api!!!

注意/额外说明:

1.本次调用大模型api的方式为统一的openai接口格式,这样统一规范的好处是更换模型仅仅需要更换api key和api base即可,而不同模型厂家的api key和api base都在官网有说明,所以,学会了这种方式,我们不仅仅学会了调用deepseek,任何大模型都可以调用。

2.代码的意思可以自行询问AI,它解释的比我更清楚

3.目前仅仅为一轮对话,下一篇将更新多轮对话的代码完善

4.对于小白来说,难的不是调用大模型的api,而是前期的环境配置,万事开头难,希望可以在B站找个播放量高的视频花上半个小时认真学一下,环境配置好了后面的教程可以一直使用。

小编会持续更新大模型应用开发系列教程,如提示词工程、Web交互界面、模型微调、工具调用、Agent、常用AI工具的使用等,持续跟进AI圈的进展和完善,可以选择关注一下我。

码字不易,请多多点赞、转发~

### 如何在 PyCharm 中调用 DeepSeek API 为了在 PyCharm 中成功调用 DeepSeek API,需先确保已安装并配置好 CodeArts Snap 插件。CodeArts Snap 支持 Python 和 Java 编程语言,并可以在 PyCharm 上作为插件使用[^2]。 #### 安装 CodeArts Snap 插件 1. 打开 PyCharm 并进入 `File` -> `Settings` (Windows/Linux) 或者 `PyCharm` -> `Preferences` (macOS)。 2. 寻找 `Plugins` 选项卡,在 Marketplace 搜索 "CodeArts Snap" 并完成安装。 3. 安装完成后重启 IDE 应用程序使更改生效。 #### 配置 DeepSeek API Key - 在 PyCharm 的右侧边栏找到 CodeArts Snap 工具窗口。 - 点击工具窗口内的设置图标来打开配置页面。 - 添加新的模型配置项,名称可以自定义,例如命名为 deepseek-coder。 - 将之前获取到的 DeepSeek API 密钥填入对应的 apiKey 字段中[^1]。 #### 使用 DeepSeek API 进行编码辅助 下面是个简单的 Python 脚本例子展示如何通过集成后的环境利用 DeepSeek 提供的功能: ```python import requests def get_code_suggestions(prompt, api_key): url = 'https://api.deepseek.com/v1/coding' headers = { 'Authorization': f'Bearer {api_key}', 'Content-Type': 'application/json', } data = {"prompt": prompt} response = requests.post(url, json=data, headers=headers) if response.status_code == 200: result = response.json() return result['suggestion'] else: raise Exception(f'Request failed with status code {response.status_code}') if __name__ == '__main__': user_input = input('Enter your coding question or problem description:\n') try: suggestion = get_code_suggestions(user_input, '<your_api_key>') print('\nSuggested solution:') print(suggestion) except Exception as e: print(e) ``` 此脚本会向用户提供个交互式的命令行界面,允许他们输入有关编程问题的具体描述;随后它将这些信息发送给 DeepSeek API 来请求建议性的解决方案,并最终打印出返回的结果。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值