我们很容易用numpy()和from_numpy()将Tensor和NumPy中的数组相互转换。但是需要注意的一点是: 这两个函数所产生的的Tensor和NumPy中的数组共享相同的内存(所以他们之间的转换很快),改变其中一个时另一个也会改变!!!
还有一个常用的将NumPy中的array转换成Tensor的方法就是torch.tensor(), 需要注意的是,此方法总是会进行数据拷贝(就会消耗更多的时间和空间),所以返回的Tensor和原来的数据不再共享内存。
Tensor转NumPy
使用numpy()将Tensor转换成NumPy数组:
In [21]:
a = torch.ones(5)
b = a.numpy()
print(a, b)
a += 1
print(a, b)
b += 1
print(a, b)
tensor([1., 1., 1., 1., 1.]) [1. 1. 1. 1. 1.]
tensor([2., 2., 2., 2., 2.]) [2. 2. 2. 2. 2.]
tensor([3., 3., 3., 3., 3.]) [3. 3. 3. 3. 3.]
NumPy数组转Tensor
使用from_numpy()将NumPy数组转换成Tensor:
In [22]:
import numpy as np
a = np.ones(5)
b = torch.from_numpy(a)
print(a, b)
a += 1
print(a, b)
b += 1
print(a, b)
[1. 1. 1. 1. 1.] tensor([1., 1., 1., 1., 1.], dtype=torch.float64)
[2. 2. 2. 2. 2.] tensor([2., 2., 2., 2., 2.], dtype=torch.float64)
[3. 3. 3. 3. 3.] tensor([3., 3., 3., 3., 3.], dtype=torch.float64)
所有在CPU上的Tensor(除了CharTensor)都支持与NumPy数组相互转换。
此外上面提到还有一个常用的方法就是直接用torch.tensor()将NumPy数组转换成Tensor,需要注意的是该方法总是会进行数据拷贝,返回的Tensor和原来的数据不再共享内存。
In [23]:
# 用torch.tensor()转换时不会共享内存
c = torch.tensor(a)
a += 1
print(a, c)
[4. 4. 4. 4. 4.] tensor([3., 3., 3., 3., 3.], dtype=torch.float64)
Tensor on GPU
用方法to()可以将Tensor在CPU和GPU(需要硬件支持)之间相互移动。
In [24]:
# 以下代码只有在PyTorch GPU版本上才会执行
if torch.cuda.is_available():
device = torch.device("cuda") # GPU
y = torch.ones_like(x, device=device) # 直接创建一个在GPU上的Tensor
x = x.to(device) # 等价于 .to("cuda")
z = x + y
print(z)
print(z.to("cpu", torch.double)) # to()还可以同时更改数据类型