gridspec模块
matplotlib的gridspec模块是专门指定画布中子图位置的模块,该模块中包含一个GridSpec类,通过显式地创建GridSpec类对象来自定义画布中子图的布局结构,使得子图能够更好地适应画布。GridSpec类的构造方法的语法格式如下:
GridSpec(nrows, ncols, figure=None, left=None, bottom=None, right=None,
top=None, wspace=None, hspace=None, width_ratios=None, height_ratios=None)
该方法常用参数的含义如下:
- nrows:表示行数。
- ncols:表示列数。
- figure:表示布局的画布。
- left,bottom,right,top:表示子图的范围。
- wspace:表示子图之间预留的宽度量。
- hspace:表示子图之间预留的高度量。
- width_ratios:设置坐标系的相对宽度—>每个坐标系的宽度 = 设定值/sum(设定值)
- height_ratios:设置坐标系的相对高度—>每个坐标系的高度 = 设定值/sum(设定值)
下面使用GridSpec ()方法创建子图的布局结构
创建一个2行2列的4个子图
部分代码如下:
导入模块
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
#1.创建画布实例
fig_1 = plt.figure()
#2.创建“区域规划图”实例(GridSpec实例)【2行2列】
spec_1 = gridspec.GridSpec(nrows=2, ncols=2, figure=fig_1)
#3.根据给定的“区域规划图”,创建对应的坐标系实例
ax1 = fig_1.add_subplot(spec_1[0,0]) #二维数组的切片操作
ax2 = fig_1.add_subplot(spec_1[0,1]) #二维数组索引操作
ax3 = fig_1.add_subplot(spec_1[1,0])
ax4 = fig_1.add_subplot(spec_1[1,1])
展示图表
plt.show()
完整代码如下:
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
#1.创建画布实例
fig_1 = plt.figure()
#2.创建“区域规划图”实例(GridSpec实例)
spec_1 = gridspec.GridSpec(nrows=2, ncols=2, figure=fig_1)
#3.根据给定的“区域规划图”,创建对应的坐标系实例
ax1 = fig_1.add_subplot(spec_1[0,0]) #二维数组的切片操作
ax2 = fig_1.add_subplot(spec_1[0,1]) #二维数组索引操作
ax3 = fig_1.add_subplot(spec_1[1,0])
ax4 = fig_1.add_subplot(spec_1[1,1])
plt.show()
运行结果如下:
在创建2行2列4个子图的基础上表示子图之间预留的宽度量和高度量
在“区域规划图”实例里增加代码如下:
#纵向和横向间距都为2
spec_1 = gridspec.GridSpec(nrows=2, ncols=2, figure=fig_1,
hspace=2, wspace=2 #坐标系实例之间纵向和横向间距
完整代码如下:
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
#1.创建画布实例
fig_1 = plt.figure()
#2.创建“区域规划图”实例(GridSpec实例)
spec_1 = gridspec.GridSpec(nrows=2, ncols=2, figure=fig_1,
hspace=2, wspace=2 #坐标系实例之间纵向和横向间距)
#3.根据给定的“区域规划图”,创建对应的坐标系实例
ax1 = fig_1.add_subplot(spec_1[0,0]) #二维数组的切片操作
ax2 = fig_1.add_subplot(spec_1[0,1]) #二维数组索引操作
ax3 = fig_1.add_subplot(spec_1[1,0])
ax4 = fig_1.add_subplot(spec_1[1,1])
plt.show()
运行结果如下:
在创建2行2列4个子图的基础上表示子图的范围
在“区域规划图”实例里增加代码如下:
#2.创建“区域规划图”实例(GridSpec实例)【2行2列】
把所有坐标系实例“打包”在一起,整体伸缩/平移
spec_1 = gridspec.GridSpec(nrows=2, ncols=2, figure=fig_1,
left=0.25, right=0.7, top=0.7, bottom=0.25 #把所有坐标系实例“打包”在一起,整体伸缩/平移
)
完整代码如下:
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
#1.创建画布实例
fig_1 = plt.figure()
#2.创建“区域规划图”实例(GridSpec实例)
spec_1 = gridspec.GridSpec(nrows=2, ncols=2, figure=fig_1,
left=0.25, right=0.7, top=0.7, bottom=0.25 #把所有坐标系实例“打包”在一起,整体伸缩/平移
)
#3.根据给定的“区域规划图”,创建对应的坐标系实例
ax1 = fig_1.add_subplot(spec_1[0,0]) #二维数组的切片操作
ax2 = fig_1.add_subplot(spec_1[0,1]) #二维数组索引操作
ax3 = fig_1.add_subplot(spec_1[1,0])
ax4 = fig_1.add_subplot(spec_1[1,1])
plt.show()
运行结果如下:
在创建2行2列4个子图的基础上设置坐标系的相对宽度和相对高度
在“区域规划图”实例里增加代码如下:
#2.创建“区域规划图”实例(GridSpec实例)【2行2列】
(把坐标系宽度分成4份,第一个子图和第三个子图的宽度占3份,第二个子图和第四个子图的宽度占1份;
把坐标系高度分成4份,第一个子图和第二个子图的宽度占3份,第三个子图和第四个子图的宽度占1份。)
spec_1 = gridspec.GridSpec(nrows=2, ncols=2, figure=fig_1,
width_ratios = [3,1],
height_ratios = [3,1]
)
完整代码如下:
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
#1.创建画布实例
fig_1 = plt.figure()
#2.创建“区域规划图”实例(GridSpec实例)
spec_1 = gridspec.GridSpec(nrows=2, ncols=2, figure=fig_1,
width_ratios = [3,1], #设置坐标系的相对宽度—>每个坐标系的宽度 = 设定值/sum(设定值)
height_ratios = [3,1] #设置坐标系的相对高度—>每个坐标系的高度 = 设定值/sum(设定值)
)
#3.根据给定的“区域规划图”,创建对应的坐标系实例
ax1 = fig_1.add_subplot(spec_1[0,0]) #二维数组的切片操作
ax2 = fig_1.add_subplot(spec_1[0,1]) #二维数组索引操作
ax3 = fig_1.add_subplot(spec_1[1,0])
ax4 = fig_1.add_subplot(spec_1[1,1])
plt.show()
运行结果如下: