数据可视化——自定义布局

gridspec模块

        matplotlib的gridspec模块是专门指定画布中子图位置的模块,该模块中包含一个GridSpec类,通过显式地创建GridSpec类对象来自定义画布中子图的布局结构,使得子图能够更好地适应画布。GridSpec类的构造方法的语法格式如下:

    GridSpec(nrows, ncols, figure=None, left=None, bottom=None, right=None, 

top=None, wspace=None, hspace=None, width_ratios=None, height_ratios=None)

该方法常用参数的含义如下:

  • nrows:表示行数。
  • ncols:表示列数。
  • figure:表示布局的画布。
  • left,bottom,right,top:表示子图的范围。
  • wspace:表示子图之间预留的宽度量。
  • hspace:表示子图之间预留的高度量。
  • width_ratios:设置坐标系的相对宽度—>每个坐标系的宽度 = 设定值/sum(设定值)
  • height_ratios:设置坐标系的相对高度—>每个坐标系的高度 = 设定值/sum(设定值)

下面使用GridSpec ()方法创建子图的布局结构

        创建一个2行2列的4个子图

部分代码如下:

导入模块

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec

#1.创建画布实例

fig_1 = plt.figure()

#2.创建“区域规划图”实例(GridSpec实例)【2行2列

spec_1 = gridspec.GridSpec(nrows=2, ncols=2, figure=fig_1)

#3.根据给定的“区域规划图”,创建对应的坐标系实例

ax1 = fig_1.add_subplot(spec_1[0,0]) #二维数组的切片操作
ax2 = fig_1.add_subplot(spec_1[0,1]) #二维数组索引操作
ax3 = fig_1.add_subplot(spec_1[1,0])
ax4 = fig_1.add_subplot(spec_1[1,1])

展示图表

plt.show()

完整代码如下:

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec

#1.创建画布实例
fig_1 = plt.figure()

#2.创建“区域规划图”实例(GridSpec实例)
spec_1 = gridspec.GridSpec(nrows=2, ncols=2, figure=fig_1)

#3.根据给定的“区域规划图”,创建对应的坐标系实例

ax1 = fig_1.add_subplot(spec_1[0,0]) #二维数组的切片操作
ax2 = fig_1.add_subplot(spec_1[0,1]) #二维数组索引操作
ax3 = fig_1.add_subplot(spec_1[1,0])
ax4 = fig_1.add_subplot(spec_1[1,1])

plt.show()

运行结果如下:

在创建2行2列4个子图的基础上表示子图之间预留的宽度量高度量

        在“区域规划图”实例里增加代码如下:

#纵向横向间距都为2

spec_1 = gridspec.GridSpec(nrows=2, ncols=2, figure=fig_1,
                          hspace=2, wspace=2   #坐标系实例之间纵向和横向间距

完整代码如下:

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec

#1.创建画布实例
fig_1 = plt.figure()

#2.创建“区域规划图”实例(GridSpec实例)
spec_1 = gridspec.GridSpec(nrows=2, ncols=2, figure=fig_1,
                          hspace=2, wspace=2   #坐标系实例之间纵向和横向间距)

#3.根据给定的“区域规划图”,创建对应的坐标系实例

ax1 = fig_1.add_subplot(spec_1[0,0]) #二维数组的切片操作
ax2 = fig_1.add_subplot(spec_1[0,1]) #二维数组索引操作
ax3 = fig_1.add_subplot(spec_1[1,0])
ax4 = fig_1.add_subplot(spec_1[1,1])

plt.show()

运行结果如下:

在创建2行2列4个子图的基础上表示子图的范围

        在“区域规划图”实例里增加代码如下:

#2.创建“区域规划图”实例(GridSpec实例)【2行2列

把所有坐标系实例“打包”在一起,整体伸缩/平移

spec_1 = gridspec.GridSpec(nrows=2, ncols=2, figure=fig_1,
                          left=0.25, right=0.7, top=0.7, bottom=0.25  #把所有坐标系实例“打包”在一起,整体伸缩/平移
                          )

完整代码如下:

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec

#1.创建画布实例
fig_1 = plt.figure()

#2.创建“区域规划图”实例(GridSpec实例)
spec_1 = gridspec.GridSpec(nrows=2, ncols=2, figure=fig_1,
                          left=0.25, right=0.7, top=0.7, bottom=0.25  #把所有坐标系实例“打包”在一起,整体伸缩/平移
                          )

#3.根据给定的“区域规划图”,创建对应的坐标系实例

ax1 = fig_1.add_subplot(spec_1[0,0]) #二维数组的切片操作
ax2 = fig_1.add_subplot(spec_1[0,1]) #二维数组索引操作
ax3 = fig_1.add_subplot(spec_1[1,0])
ax4 = fig_1.add_subplot(spec_1[1,1])

plt.show()

运行结果如下:

在创建2行2列4个子图的基础上设置坐标系的相对宽度相对高度

        在“区域规划图”实例里增加代码如下:

#2.创建“区域规划图”实例(GridSpec实例)【2行2列

(把坐标系宽度分成4份,第一个子图和第三个子图的宽度占3份,第二个子图和第四个子图的宽度占1份

把坐标系高度分成4份,第一个子图和第二个子图的宽度占3份,第三个子图和第四个子图的宽度占1份。)

spec_1 = gridspec.GridSpec(nrows=2, ncols=2, figure=fig_1,
                           width_ratios = [3,1],  
                           height_ratios = [3,1]
                           )

完整代码如下:

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec

#1.创建画布实例
fig_1 = plt.figure()

#2.创建“区域规划图”实例(GridSpec实例)
spec_1 = gridspec.GridSpec(nrows=2, ncols=2, figure=fig_1,
                           width_ratios = [3,1],  #设置坐标系的相对宽度—>每个坐标系的宽度 = 设定值/sum(设定值)
                           height_ratios = [3,1]  #设置坐标系的相对高度—>每个坐标系的高度 = 设定值/sum(设定值)
                           )

#3.根据给定的“区域规划图”,创建对应的坐标系实例

ax1 = fig_1.add_subplot(spec_1[0,0]) #二维数组的切片操作
ax2 = fig_1.add_subplot(spec_1[0,1]) #二维数组索引操作
ax3 = fig_1.add_subplot(spec_1[1,0])
ax4 = fig_1.add_subplot(spec_1[1,1])

plt.show()

运行结果如下:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值