C++/数据结构:AVL树

目录

一、AVL树的概念

二、AVL树的实现

2.1节点定义

 2.2节点插入

三、AVL树的旋转

3.1新节点插入较高左子树的左侧:右单旋

3.2新节点插入较高右子树的右侧:左单旋

3.3新节点插入较高左子树的右侧---左右:先左单旋再右单旋

3.4新节点插入较高右子树的左侧---右左:先右单旋再左单旋

四、AVL树的性能


一、AVL树的概念

二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查
找元素相当于在顺序表中搜索元素,效率低下。因此,两位俄罗斯的数学家G.M. A delson- V elskii
和E.M. L andis在1962年 发明了一种解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证每个结点的左右 子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均 搜索长度。
一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树:
它的左右子树都是AVL树 左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)
如果一棵二叉搜索树是高度平衡的,它就是AVL树。如果它有n个结点,其高度可保持在
$O(log_2 n)$,搜索时间复杂度logn。

二、AVL树的实现

2.1节点定义

template <class K,class V>
class AVLtreeNode
{
	AVLtreeNode<K, V>* _left;
	AVLtreeNode<K, V>* _right;
	AVLtreeNode<K, V>* _parent;
	pair<K, V> _kv;
	int bf;
	AVLtreeNode(const pair<K, V>& kv)
		:_left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _kv(kv)
		, bf(0)
	{}
};

 2.2节点插入

AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树。那么
AVL树的插入过程可以分为两步:
1. 按照二叉搜索树的方式插入新节点
2. 调整节点的平衡因子
新节点插入后,AVL树的平衡性可能会遭到破坏,此时就需要更新平衡因子,并检测是否破坏了AVL树的平衡性。
pCur插入后,pParent的平衡因子一定需要调整,在插入之前,pParent的平衡因子分为三种情况:-1,0, 1, 分以下两种情况:
 1. 如果pCur插入到pParent的左侧,只需给pParent的平衡因子-1即可
 2. 如果pCur插入到pParent的右侧,只需给pParent的平衡因子+1即可
此时:pParent的平衡因子可能有三种情况:0,正负1, 正负2
 1. 如果pParent的平衡因子为0,说明插入之前pParent的平衡因子为正负1,插入后被调整成0,此时满足 AVL树的性质,插入成功
 2. 如果pParent的平衡因子为正负1,说明插入前pParent的平衡因子一定为0,插入后被更新成正负1,此时以pParent为根的树的高度增加,需要继续向上更新
 3. 如果pParent的平衡因子为正负2,则pParent的平衡因子违反平衡树的性质,需要对其进行旋转处理
bool insert(const pair<K, V>& kv)
	{
		if (_root == nullptr)
		{
			_root = new(kv);
			return true;
		}
		Node* parent = nullptr;
		Node* cur = _root;
		while (cur)
		{
			if (cur->_kv.first > kv.first)
			{
				parent = cur;
				cur = cur->_left;
			}
			else if (cur->_kv.first < kv.first)
			{
				parent = cur;
				cur = cur->_right;
			}
			else
			{
				return false;
			}			
		}

		cur = new Node(kv);
		if (parent->_kv.first>cur->_kv.first)
		{
			parent->_left = cur;
		}
		else
		{
			parent->_right = cur;
		} 
		cur->_parent = parent;

		//调整avl树的结构,处理parent的平衡因子
		while (parent)
		{
			if (parent->left == cur)
			{
				parent->bf--;
			}
			else if (parent->right == cur)
			{
				parent->bf++;
			}

			//不断向上更改avl树中的bf平衡因子
			if (parent->_bf == 1 || parent->_bf == -1)
			{
				//更新去上面的父节点的bf
				parent = parent->_parent;
				cur = cur->parent;
			}
			else if (parent->_bf == 2 || parent->_bf == -2)
			{
				//旋转处理
				//单旋
				if (parent->_bf == 2 && cur->_bf == 1)//右边高 
				{
					RotateL(parent);//左单旋
				}
				else if (parent->_bf == -2 && cur->_bf == -1)//左边高
				{
					RotateR(parent);//右单旋
				}
				//双旋处理
				else if (parent->_bf==-2&&cur->_bf==1)//左边高的右边高,先左旋再右旋
				{
					RotateLR(parent);
				}
				else if (parent->_bf == 2 && cur->_bf == -1)
				{
					RotateRL(parent)//右边高的左边高,先右旋再左旋
				}
				else
				{
					assert(false);
				}
				break;
			}
			else
			{
				assert(false);
			}
		}
		return true;
	}

三、AVL树的旋转

如果在一棵原本是平衡的AVL树中插入一个新节点,可能造成不平衡,此时必须调整树的结构,使之平衡化。根据节点插入位置的不同,AVL树的旋转分为四种:

3.1新节点插入较高左子树的左侧:右单旋

上图在插入前,AVL树是平衡的,新节点插入到30的左子树(注意:此处不是左孩子)中,30左子树增加了一层,导致以60为根的二叉树不平衡,要让60平衡,只能将60左子树的高度减少一层,右子树增加一层,即将左子树往上提,这样60转下来,因为60比30大,只能将其放在30的右子树,而如果30有右子树,右子树根的值一定大于30,小于60,只能将其放在60的左子树,旋转完成后,更新节点的平衡因子即可。在旋转过程中,有以下几种情况需要考虑:
1. 30节点的右孩子可能存在,也可能不存在。
2. 60可能是根节点,也可能是子树如果是根节点,旋转完成后,要更新根节点如果是子树,可能是某个节点的左子树,也可能是右子树。
void RotateR(Node* parent)//右单旋
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;
		Node* pparent = parent->_parent;

		parent->_left = subLR;
		if (subLR) subLR->_parent = parent;

		subL->_right = parent;
		parent->_parent = subL;

		if (pparent == nullptr)
		{
			_root = subL;
			subL->_parent = nullptr;
		}
		else
		{
			if (pparent->_left == parent)
			{
				pparent->_left == subL;
			}
			else
			{
				pparent->_right == subL;
			}
			subL->_parent = pparent;
		}
		subL->_bf = parent->_bf = 0;
		return true;
	}
	void RotateLR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;
		int bf = subLR->_bf;

		RotateL(parent->_left);
		RotateR(parent);  

		if (bf == 1)//左边高的右边高,新增节点在右
		{
			parent->_bf = 0;
			subLR->_bf = 0;
			subL->_bf = -1;
		}
		else if (bf == -1)//新增节点在左
		{
			parent->_bf = 1;
			subLR->_bf = 0;
			subL->_bf = 0 ;
		}
		else if (bf == 0)//本身就是新增节点直接导致出现左边高的右边高
		{
			parent->_bf = 0;
			subLR->_bf = 0;
			subL->_bf = 0;
		}
		else
		{
			assert(false);
		}
	}

3.2新节点插入较高右子树的右侧:左单旋

和右单旋的思路以及实现方式大相径庭。只需略微改动。

void RotateL(Node* parent)//左单旋
	{
		Node* subR = parent->right;
		Node* subRL = subR->left;

		Node* pparent = parent->_parent;
		parent->right = subRL;
		if(subRL)
		subRL->_parent = parent;

		subR->left = parent;
		parent->_parent = subR;

		if (pparent == nullptr)
		{
			_root = subR;
			_root->_parent = nullptr;
		}
		else
		{
			if (pparent->_left == parent)
			{
				pparent->_left = subR;
			}
			else
			{
				pparent->_right = subR;
			}
			subR->_parent = pparent;
		}
		parent->_bf = subR->_bf = 0;
	}

3.3新节点插入较高左子树的右侧---左右:先左单旋再右单旋

将双旋变成单旋后再旋转,即:先对30进行左单旋,然后再对90进行右单旋,旋转完成后再
考虑平衡因子的更新。
void RotateLR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;
		int bf = subLR->_bf;

		RotateL(parent->_left);
		RotateR(parent);  

		if (bf == 1)//左边高的右边高,新增节点在右
		{
			parent->_bf = 0;
			subLR->_bf = 0;
			subL->_bf = -1;
		}
		else if (bf == -1)//新增节点在左
		{
			parent->_bf = 1;
			subLR->_bf = 0;
			subL->_bf = 0 ;
		}
		else if (bf == 0)//本身就是新增节点直接导致出现左边高的右边高
		{
			parent->_bf = 0;
			subLR->_bf = 0;
			subL->_bf = 0;
		}
		else
		{
			assert(false);
		}
	}

3.4新节点插入较高右子树的左侧---右左:先右单旋再左单旋

参考右左双旋

void RotateRL(Node* parent)
	{

		Node* subR = parent->_right;
		Node* subRL =subR->_left;
		int bf = subRL->_bf;
		RotateR(parent->_right);
		RotateL(parent);
		if (bf == 1)
		{
			parent->_bf = -1;
			subRL->_bf = 0;
			subR->_bf = 0;
		}
		else if (bf == -1)
		{
			parent->_bf = 0;
			subRL->_bf = 0;
			subR->_bf = 1;
		}
		else if (bf == 0)
		{
			parent->_bf = 0;
			subRL->_bf = 0;
			subR->_bf = 0;
		}
		else
		{
			assert(false);
		}
	}
总结:
假如以pParent为根的子树不平衡,即pParent的平衡因子为2或者-2,分以下情况考虑
1. pParent的平衡因子为2,说明pParent的右子树高,设pParent的右子树的根为pSubR。
当pSubR的平衡因子为1时,执行左单旋。
当pSubR的平衡因子为-1时,执行右左双旋。
2. pParent的平衡因子为-2,说明pParent的左子树高,设pParent的左子树的根为pSubL。
当pSubL的平衡因子为-1是,执行右单旋。
当pSubL的平衡因子为1时,执行左右双旋。
旋转完成后,原pParent为根的子树个高度降低,已经平衡,不需要再向上更新。

四、AVL树的性能

因为AVL树也是二叉搜索树,可按照二叉搜索树的方式将节点删除,然后再更新平衡因子,只不 错与删除不同的时,删除节点后的平衡因子更新,最差情况下一直要调整到根节点的位置。

AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这 样可以保证查询时高效的时间复杂度,即$log_2 (N)$。但是如果要对AVL树做一些结构修改的操作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时, 有可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数 据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合。

  • 29
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 15
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

C+五条

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值