DP——题解

文章通过两个示例介绍了如何使用动态规划求解最长上升子序列问题和矩阵链乘法问题。在最长上升子序列问题中,通过比较和更新每个元素的最长上升子序列长度来找到全局最长序列。在矩阵链乘法问题中,利用动态规划存储并计算矩阵乘法过程中对应位置的最大值,以找到最小代价的乘法顺序。
摘要由CSDN通过智能技术生成

例1

#include <iostream>

using namespace std;

const int N = 1010;

int a[N];//存储数据

int f[N];//f[i]表示对应的a[i]的最长上升序列

int main()

{

int n;

cin >> n;

for (int i = 1; i <= n; i ++ ) cin >> a[i];

for (int i = 1; i <= n; i ++ )

{

f[i] = 1;

for (int k = 1; k < i; k ++ )

if (a[k] < a[i]) f[i] = max(f[i], f[k] + 1);//a[i]>a[k],那么f[i]可等于f[k]+1(将a[i]加入截止到a[k]的最长序列)

}

int res = 0;

for (int i = 1; i <= n; i ++ )

res = max(res, f[i]);

cout << res << endl;

return 0;

}

当程序运行到a[i]时,会比较a[0]--a[i-1],当遇到比a[i]小的数a[k]时就会更新f[i]为f[i]和f[k]+1之间的最大值,图中样例得到的f[i]={1 1 2 1 3 3 4 },所以最大上升子序列长度为4;

例二

#include<iostream>

using namespace std;

int n;

const int N=505,INT=1e9;

int f[N][N],g[N][N];//数组g用于存储输入数据,数组f用于存储数组g运算至相应位置的最大值

int main(){

cin>>n;

for(int i=0;i<=n;i++)

for(int j=0;j<=n;j++)

f[i][j]=-INT;//初始化,因为数据中存在负数,所以需要将其初始化为一个极小值

for (int i = 1; i <= n; i ++ )

for (int j = 1; j <= i; j ++ )

cin >> g[i][j];

f[1][1]=g[1][1];

for(int i=2;i<=n;i++)

for(int j=1;j<=i;j++)

f[i][j] = max(f[i - 1][j - 1], f[i - 1][j]) + g[i][j];//保证对应位置选择当前最大值的路线

int res = -INT;

for (int i = 0; i <= n; i ++ )

res = max(res, f[n][i]);

cout << res << endl;

return 0;

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值