GNSS突击复习【10】

载波相位观测量

优点:测距精度高
缺点:

  1. 整周计数跳变(周跳)存在误差,需要探测和修复
  2. 整周模糊度(整周未知数)需要确定

整周模糊度的解算

根据观测数据,通过一定的方法,求解出载波相位观测值中所含有的初试模糊度参数
由于测量噪声、各种误差修正的参与误差以及数据处理软件的不完善,求解的模糊度一般不等于理论的整数,而是一个实数,根据模糊度的整数的特性,将模糊度从实数固定为整数,称为整周模糊度的解算(整周模糊度的固定)

需要固定整周模糊度的原因

(双差)相位观测值中包含未知的整周模糊度,只有将是实数的整周模糊度固定为整数的整周模糊度,才能够得到高精度的载波相位观测值,才能够精确的测量卫地距离。同时由于存在误差,使得整周模糊度不会正好等于整数。
因此需要实数解为基础进一步确定模糊度的真值,提高定位的精度,同时也能够提高解的可靠性。

模糊度结算方法

取整法

实数模糊度解的精度足够高

观测值域的整周模糊度确定

双频码-相组合确定模糊度(MW组合)

坐标域内的整周模糊度的确定

模糊度函数法(AFM):通过搜索算法获得基线向量的最优解(此解为最小二乘下的最优解)(确定搜索区域;确定最优解)
基于先验坐标信息的单历元整周模糊度的确定方法

模糊度域内的整周模糊度的确定!!!

经典置信区间搜索法
适用于静态定位和动态定位中的算法
FARA方法(快速模糊度解算法):利用初始平差系统的信息选择搜索范围,使用方差-协方差信息排除从统计角度看复发接受的备选的模糊度组合,应用假设检验选择正确的模糊度组合。
最小二乘模糊度降相关平差方法:LAMBDA方法
LAMBDA算法::最小二乘降相关算法:通过整数变换,压缩搜索椭球,减少搜索备选节点数。
LAMBDA在保证椭圆容积不变的条件下,通过整数变换降低相关性,提高精度,经过整数变换后的参数不会改变原始的参数的整数特性,并且是可逆的。

模糊度解算

影响模糊度解算的因素:载波波长;观测时间;观测条件
模糊度解算的成功率取决于:观测方程(函数模型);观测值误差(随机模型);整周模糊度估计方法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值