【抽代复习笔记】25-群(十九):一个关于循环群的重要定理以及三道证明例题

定理:G = (a)是n阶循环群,则:

(1)|a^r| = n/(r,n)((r,n)是r和n的最大公因数);

(2)当(r,n) = 1时,a^r也是一个生成元;

(3)G中有欧拉函数φ(n)个生成元(φ(n)表示小于n且与n互素的非负整数的个数)。

(证明过程暂无,后续可能会补充)

证:(1)设G = (a),|a^r| = t,令d = (r,n),

要证|a^r| = n/(r,n) = n/d,只需证t = n/d,即只需证t|(n/d),且(n/d)|t(t整除n/d,且n/d整除t),

因为(r,n) = d,所以存在整数r1,n1,满足r = dr1,n = dn1,且(r1,n1) = 1,

①由于|a| = n,所以(a^r)^(n/d) = (a^n)^(r/d) = (a^n)^r1 = e^r1 = e,从而有t|(n/d);

②a^(rt) = (a^r)^t = e,因为|a| = n,所以n|(rt),

从而(dn1)|(dr1t),又因为d ≠ 0,所以有n1|r1t,而又(n1,r1) = 1,所以n1|t,即(n/d)|t。

这样我们就证明了t|(n/d)且(n/d)|t,因此t = n/d,即|a^r| = t = n/d = n/(r,n)。

(2)因为|G| = n,所以要证a^r也能生成G,只需证|a^r| = n,

因为|a| = n,所以由(1)知|a^r| = n/(r,n) = n/1 = n = |G|,

所以a^r也是G的生成元。

(3)暂无,后续有的话会补充。

 

例1:证明,一个循环群一定是一个交换群。

证:设G = (a),对任意的a^m,a^n∈G,有a^m o a^n = a^(m+n) = a^n o a^m,

因此G是一个交换群。

 

例2:(G,o)是一个循环群,(G,o)∼(G1,o1),证明,(G1,o1)也是一个循环群。

证:设G = (a),定义Φ:G→G1是满同态映射,

要证G1是一个循环群,只需要找出G1中的一个生成元,

因Φ是满射,所以对任意Φ(b)∈G1,都存在b∈G与之对应,

又因G是循环群,所以存在m∈Z,满足a^m = b,

从而Φ(b) = Φ(a^m) = Φ(a o a o ... o a)(m个a) = Φ(a) o1 Φ(a) o1 ... o1 Φ(a)(m个Φ(a)) = [Φ(a)]^m,

也就是说,对于任意的Φ(b)∈G1,都存在m∈Z,使得Φ(b) = [Φ(a)]^m,

且由于Φ是从G到G1的映射,所以Φ(a)∈G1,

因此Φ(a)是G1的生成元,G1中任意元素都可以由其生成,所以(G1,o1)是循环群。

 

例3:设(G,o)为无限阶循环群,(G1,o1)为任一循环群,证明,(G,o)∼(G1,o1)。

证:设G = (a),G1 = (a1),定义Φ:G→G1为Φ(a^m) = a1^m,

因为G是无限阶循环群,所以G = {...,a^(-3),a^(-2),a^(-1),a^0,a^1,a^2,a^3,...}(见第23篇文章循环群基本定理的证明),

对任意的a^m∈G,存在唯一的a1^m∈G1与之对应,因此Φ是映射,

而对任意的a1^m∈G1,存在a^m∈G与之对应(未必唯一,因为(G1,o1)也许是有限循环群),因此Φ是满射,

对任意的a^m,a^n∈G,有Φ(a^m o a^n) = Φ(a^(m+n)) = a1^(m+n) = a1^m o1 a1^n = Φ(a^m) o1 Φ(a^n),所以Φ是同态映射,

综上所述,(G,o)∼(G1,o1)。

 

(待续……)

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值