【抽代复习笔记】30-群(二十四):关于陪集的一个定理

例(续上):(7)将(6)与(3)、(4)比较,可以得到什么结果?

(8)设A₄/K₄ = {(1)K₄,(123)K₄,(132)K₄},规定:aK₄ o bK₄ = (a o b)K₄,判断A₄/K₄关于给定的乘法能否做成一个群?若能,判断这个群与哪个群同构?

(9)试找出|A₄|、|K₄|和|A₄/K₄|之间的关系。

解:(7)观察(6)和(3)可发现,(124)∈(132)K₄,且(124)K₄和(132)K₄含有相同的元素,即(124)K₄ = (132)K₄;

同理有(134)∈(123)K₄,(134)K₄ = (123)K₄;(12)(34)∈(14)(23)K₄,(12)(34)K₄ = (14)(23)K₄ = K₄。

由此不难归纳出两个结论:

①“a∈bK₄”等价于“aK₄ = bK₄”;

②“a∈K₄”等价于“aK₄ = K₄”。

(8)①按照规定,(1)K₄ o (123)K₄ = (123)K₄∈A₄/K₄,(1)K₄ o (132)K₄ = (132)K₄∈A₄/K₄,(123)K₄ o (132)K₄ = (1)K₄∈A₄/K₄,即任取a,b∈A₄/K₄,都有a o b∈A₄/K₄,因此满足群公理的第一条封闭性;

((1)K₄ o (123)K₄) o (132)K₄ = (1)K₄ o ((123)K₄ o (132)K₄) = (1)K₄,

((1)K₄ o (132)K₄) o (123)K₄ = (1)K₄ o ((132)K₄ o (123)K₄) = (1)K₄,

((123)K₄ o (1)K₄) o (132)K₄ = (123)K₄ o ((1)K₄ o (132)K₄) = (1)K₄,

即任取a,b,c∈A₄/K₄,都有(a o b) o c = a o (b o c),因此满足了群公理第二条结合律;A₄/K₄中的单位元是(1)K₄,满足了群公理第四条;

(1)K₄的逆元是它本身,(123)K₄和(132)K₄互为逆元,即A₄/K₄中每一个元素,都能在A₄/K₄中找到对应的逆元,因此满足了群公理的第五条。

综上所述,根据群的第二判定定理,可推出A₄/K₄关于给定的乘法作成群。

②A₄/K₄与群{(1),(123),(132)}同构,与模3的剩余类加群(Z₃,+)。

(9)A₄/K₄、A₄、K₄中分别含有3、12、4个元素,即|A₄/K₄| = 3,|A₄| = 12、|K₄| = 4,因此可得:|A₄/K₄| = |A₄| / |K₄|。

 

定理:

设H≤G,a,b∈G,则:

(1)a∈aH(a∈Ha);

(2)“a∈bH”等价于“aH = bH”等价于“a^(-1) o b∈H”(“a∈bH”等价于“Ha = Hb”等价于“a o b^(-1)∈H”);

(3)|aH| = |Ha| = |H|。

证:(1)因为H≤G,所以e∈H,所以a = a o e∈aH(同理可证a∈Ha);

(2)①先证:“a∈bH”可推出“aH = bH”。

对任意的a o h∈aH,有h∈H,

又因为a∈bH,因此存在h₁∈H,使得a = bh₁,从而a o h = (b o h₁) o h = b o (h o h1),

根据群的封闭性,可得h o h₁∈H,所以a o h∈bH,由此可得aH≤bH,

又b o h∈bH,a = b o h₁,所以h,h₁∈H,b = a o h₁^(-1),

所以b o h = (a o h₁^(-1)) o h = a o (h₁^(-1) o h),

因为H≤G,所以由子群的判定定理,可得h₁^(-1) o h∈H,

从而b o h∈aH,从而有bH≤aH,

综上所述,我们便推导出了aH = bH。

②再证:“aH = bH”可推出“a^(-1) o b∈H”。

对任意c∈aH = bH,存在h₁,h₂∈H,

使得c = ah₁ = bh₂,所以有h₁ = a^(-1) o b o h₂,即h₁ o h₂^(-1) = a^(-1) o b,

而H≤G,所以h₁ o h₂^(-1)∈H,

所以a^(-1) o b∈H。

③最后证:“a^(-1) o b∈H”可推出“a∈bH”。

因为H≤G,所以(a^(-1) o b)^(-1) = b^(-1) o a∈H,

因此a = e o a = (b o b^(-1)) o a = b o (b^(-1) o a)∈bH。

(3)先证:|aH| = |H|。

只需证aH和H之间存在双射映射。

定义φ:H→aH为φ(h) = a o h,

①对任意的a o h∈aH,存在唯一的h∈H,使得φ(h) = a o h,因此φ是满射;

②对任意的h₁,h₂∈H,若φ(h₁) = φ(h₂),则有a o h₁ = a o h₂,

因为H≤G,所以o的消去率从群G中继承,

所以有h₁ = h₂,

因此φ是单射。

这样就证明了φ是从H到aH的一个一一映射,所以H和aH中元素的个数相等,

即有|H| = |aH|。

同理可证|Ha| = |H|。

综上所述可得:|aH| = |Ha| = |H|。

 

(待续......)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值