路由器购买指南,和网络不稳定、断网说拜拜

是不是经常遇见这种情况:

办公网络日常断网,运营商表示:网络没问题。

到底是哪里出问题?

抛开宽带运营商的原因,还有什么会影响网络稳定性,导致网络差?

百兆口vs千兆口

路由器、网线、宽带运营商三者叠加在一起最终影响网络的稳定性,关于网速常见单位如下:

· MB/s:常见于下载文件当中;

· Mb/s:常见于路由器和带宽的商家介绍中,一般写成Mbps,或者简写为M;

其中,1B=8b,因此当我们的宽带为200M时,理论上它的最大速度为200÷8=25 MB/s,当然这是属于极限速度。

实际上,还要看路由器和网线,如果路由器只有百兆网口,它的极限速度也会被限制在100M,建议在购买路由器时,尽可能选择双千兆网口的路由器,具体参考数据如下:

WAN用于外网,LAN用于内网,这是买路由器时最容易踩坑的地方,很多的商品标明千兆网口,但并非双千兆,而是百兆+千兆。

因此在购买路由器过程中,多加留意这两个端口数据。

优选WiFi 6

随着智能设备的不断优化,我们对网络的要求越来越高,现在的手机、平板、笔记本电脑等也开始适配WiFi 6协议,实现在打游戏、看视频、购物抢购时快人一步,WiFi 6具体优势如下:

高带宽/高并发:相比传输速率只有3.5Gbps,理论速度是867Mbps的WiFi 5,WiFi6的传输速率提升至9.6Gbps,理论速度提升至1201Mbps,还提升多台设备同时传输时的吞吐量;

低延迟/低功耗:WiFi 6平均延迟时间为20ms,而WiFi5为30ms,延迟降低了1/3,另外WiFi 6还支持TWT,联网设备功耗也降低30%左右;

设备价格:随着技术的成熟,WiFi 6的价格也打下来了,办公环境使用WiFi6协议路由器更合适。

具体参数参考如下:

路由器内存与带机量

一般家用路由器对CPU、内存等参数要求并不高,但办公环境外界干扰因素太多,因此建议办公网络环境尽量选择较大内存+CPU更强的设备,才能够流畅处理数据。

此外,建议路由器预留50%的带机量空间,保障设备更好地运行,例如:一台路由器需要承载100台联网设备,那么路由器带机量至少是150台,才能够支撑整个网络的正常运行(带机量越多,价格越贵)。

双频和单频路由器

一般路由器都有2.4G和5G双频段,它们会同时发出2.4G+5G信号,二者的差异如下图:

覆盖范围广,提高网速,双频道同时支持是路由器的理想状态,目前一些厂商还将路由器做到了多频合一,能够智能选择最优网络。

建议办公网络选择多频段的路由器,还有一个重要原因是一些物联网设备只支持2.4G频段,例如打印机、摄像机、打卡机等。

路由器的天线

科普一个概念——MIMO,分别有SU-MIMO(单用户多进多出)和MU-MIMO(多用户多进多出)二者差异如下:

1、早期WiFi支持SU-MIMO,可以将它看成连接WiFi的设备排队传输数据,上一个传输完数据才能轮到下一个,这就像只有一辆公交车,但乘客太多,需要乘客排队坐车;

2、目前的绝大部分WiFi6路由器都支持MU-MIMO,这相当于有多辆公交车载客,乘客不需要等待,这样速度也就增加了;

另外,一般使用2根天线就是2x2MIMO,4根天线就是双频道2x2MIMO,但因为大部分电子设备都只支持2x2MIMO,所以天线太多用处也不大。

还有一个误区是,很多用户认为天线越多信号越好,其实并不一定,因为决定路由器信号更重要的是输出功率和天线增益,而不同的厂商实现方式还有所差异。

交换机VS路由器

在家庭网络中,一台性能稍强的路由器足以覆盖所有设备,但在办公网络中除了无线设备之外,还有大量有线设备,仅靠路由器提供的LAN口是远远不够的。

因此还需要一个交换机,其目的是扩展路由器的LAN口,为更多有线设备联网,逻辑图如下:

一般办公网络都是由路由器+交换机组成,交换机用于内部数据传输,路由器则利用NAT转发数据与外部网络通信。

中小型办公网络搭配

目前办公网络还在使用家用路由器+交换机,经常遇见多台设备同时联网,就出现网络差且不稳定的情况。

另外在南方炎热的夏天,室内环境温度高,再加上家用路由器散热欠缺,设备更加不稳定,断网重启成为日常操作。

为保障办公网络稳定,泓曚智联建议购买路由器时可以参照如下参数:

双千兆网口+WiFi6+带机量可预留50%空间+多频段

交换机选择建议选择千兆口以上即可,最主要的还是路由器的选择。

路由器+交换机本身的硬品质,但高质量的产品也需要高质量的售前售后,这也是产品的加分项。

### LlamaIndex 多模态 RAG 实现 LlamaIndex 支持多种数据类型的接入与处理,这使得它成为构建多模态检索增强生成(RAG)系统的理想选择[^1]。为了实现这一目标,LlamaIndex 结合了不同种类的数据连接器、索引机制以及强大的查询引擎。 #### 数据连接器支持多样化输入源 对于多模态数据的支持始于数据收集阶段。LlamaIndex 的数据连接器可以从多个异构资源中提取信息,包括但不限于APIs、PDF文档、SQL数据库等。这意味着无论是文本还是多媒体文件中的内容都可以被纳入到后续的分析流程之中。 #### 统一化的中间表示形式 一旦获取到了原始资料之后,下一步就是创建统一而高效的内部表达方式——即所谓的“中间表示”。这种转换不仅简化了下游任务的操作难度,同时也提高了整个系统的性能表现。尤其当面对复杂场景下的混合型数据集时,良好的设计尤为关键。 #### 查询引擎助力跨媒体理解能力 借助于内置的强大搜索引擎组件,用户可以通过自然语言提问的形式轻松获得所需答案;而对于更复杂的交互需求,则提供了专门定制版聊天机器人服务作为补充选项之一。更重要的是,在这里实现了真正的语义级关联匹配逻辑,从而让计算机具备了一定程度上的‘认知’功能去理解和回应人类意图背后所蕴含的意义所在。 #### 应用实例展示 考虑到实际应用场景的需求多样性,下面给出一段Python代码示例来说明如何利用LlamaIndex搭建一个多模态RAG系统: ```python from llama_index import GPTSimpleVectorIndex, SimpleDirectoryReader, LLMPredictor, PromptHelper, ServiceContext from langchain.llms.base import BaseLLM import os def create_multi_modal_rag_system(): documents = SimpleDirectoryReader(input_dir='./data').load_data() llm_predictor = LLMPredictor(llm=BaseLLM()) # 假设已经定义好了具体的大型预训练模型 service_context = ServiceContext.from_defaults( chunk_size_limit=None, prompt_helper=PromptHelper(max_input_size=-1), llm_predictor=llm_predictor ) index = GPTSimpleVectorIndex(documents, service_context=service_context) query_engine = index.as_query_engine(similarity_top_k=2) response = query_engine.query("请描述一下图片里的人物表情特征") print(response) ``` 此段脚本展示了从加载本地目录下各类格式文件开始直到最终完成一次基于相似度排序后的top-k条目返回全过程。值得注意的是,“query”方法接收字符串参数代表使用者想要询问的内容,而在后台则会自动调用相应的解析模块并结合先前准备好的知识库来进行推理计算得出结论。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值