实验六——logistisc回归

逻辑回归是一种用于处理分类问题的统计学习方法,它被广泛应用于机器学习和数据分析领域。

逻辑回归的优缺点

优点:

  1. 解释性强:逻辑回归能够提供各个特征对于分类结果的影响程度,因此在需要理解变量影响的情况下具有较好的可解释性。

  2. 计算代价低:相对于一些复杂的分类模型,逻辑回归的计算代价比较低,训练速度快,尤其适合处理大规模数据集。

  3. 输出结果自然地表示为概率:逻辑回归的输出是一个概率值,可以直观地理解样本属于某一类的可能性。

  4. 容易更新模型:当新数据到来时,可以方便地通过在线学习的方式更新逻辑回归模型。

缺点:

  1. 只能处理线性可分问题:逻辑回归是一个线性分类器,在处理非线性问题时表现不佳,需要进行特征工程或者使用核技巧等方法进行处理。

  2. 对异常值敏感:逻辑回归对异常值比较敏感,异常值可能会对模型产生较大影响,需要进行数据预处理和异常值处理。

  3. 无法很好地处理大量特征或者特征之间相关性较强的情况,容易出现过拟合问题。

实现:

import numpy as np
from scipy.optimize import minimize

# 极大似然估计函数
def likelihood_function(beta, X, y):
    scores = np.dot(X, beta)
    ll = np.sum(y * scores - np.log(1 + np.exp(scores)))
    return -ll  # 最大化对数似然函数等价于最小化相反数

# 最优化求解
def fit_logistic_regression(X, y):
    num_features = X.shape[1]
    initial_beta = np.zeros(num_features)  # 初始参数值
    result = minimize(likelihood_function, initial_beta, args=(X, y), method='BFGS')
    return result.x

# 示例数据
X = np.array([[1, 2], [2, 3], [3, 4], [4, 5]])
y = np.array([0, 0, 1, 1])

# 拟合逻辑回归模型
beta_hat = fit_logistic_regression(X, y)
print("最佳回归系数:", beta_hat)

小结:

在上述的代码中,使用极大似然估计和最优化方法来拟合逻辑回归模型,最终得到的beta_hat即为最佳的回归系数。这些系数可以用于构建逻辑回归模型,进而进行预测和分类任务。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值