引言
在学术研究中,文献引用和书籍的引用情况是衡量研究质量和学术影响力的重要指标。许多学术平台,如 Google Scholar、ResearchGate、IEEE Xplore 和 SpringerLink 等,提供了丰富的学术资源和引用数据。这些数据可以为学术分析、学术评估、学术趋势预测以及个人科研工作提供重要支持。
在本篇博客中,我们将深入介绍如何使用 Python 爬虫技术从学术平台抓取书籍信息、文献引用情况、相关论文等数据。通过具体的实例,结合 requests、BeautifulSoup、Selenium 和 Scrapy 等技术,我们将逐步展示如何完成数据抓取、清洗、存储和分析等任务,并用 pandas 和 matplotlib 等工具进行数据可视化,最终帮助学术研究人员更好地进行数据驱动的科研分析。
目录
1. 使用 requests 和 BeautifulSoup 抓取静态页面数据
技术栈
在这篇博客中,我们将使用以下技术栈来抓取和处理学术数据:
- requests:用于发送 HTTP 请求,抓取静态网页内容。
- BeautifulS