Python爬虫实战:深度解析携程/飞猪酒店评论API与大数据采集

一、引言:酒店评论数据的价值与采集挑战

在当今的数字化旅游时代,在线旅游平台(OTA)如携程和飞猪积累了海量的酒店评论数据。这些数据对于酒店经营优化、市场竞争分析、用户行为研究等领域具有重要价值。然而,由于平台的反爬虫机制和数据保护政策,大规模获取这些评论数据面临诸多技术挑战。

传统的网页爬虫技术在处理现代Web应用时往往效率低下且容易被封禁。本文将通过分析酒店详情页的API接口,采用最新的Python爬虫技术,构建一个高效、稳定的酒店评论采集系统。

二、技术选型与环境配置

2.1 核心技术栈
  • 请求库:httpx(异步HTTP客户端)

  • 解析库:BeautifulSoup4、json

  • 浏览器自动化:Playwright

  • 数据存储:Pandas + SQLAlchemy

  • 代理服务:IP代理池

  • 反爬对策:请求头随机化、IP轮换、行为模拟

2.2 环境配置

python

# requirements.txt
httpx==0.24.0
beautifulsoup4==4.12.2
playwright==1.40.0
pandas==2.1.3
sqlalchemy==2.0.23
fake-use
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Python爬虫项目

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值