一、引言:酒店评论数据的价值与采集挑战
在当今的数字化旅游时代,在线旅游平台(OTA)如携程和飞猪积累了海量的酒店评论数据。这些数据对于酒店经营优化、市场竞争分析、用户行为研究等领域具有重要价值。然而,由于平台的反爬虫机制和数据保护政策,大规模获取这些评论数据面临诸多技术挑战。
传统的网页爬虫技术在处理现代Web应用时往往效率低下且容易被封禁。本文将通过分析酒店详情页的API接口,采用最新的Python爬虫技术,构建一个高效、稳定的酒店评论采集系统。
二、技术选型与环境配置
2.1 核心技术栈
-
请求库:httpx(异步HTTP客户端)
-
解析库:BeautifulSoup4、json
-
浏览器自动化:Playwright
-
数据存储:Pandas + SQLAlchemy
-
代理服务:IP代理池
-
反爬对策:请求头随机化、IP轮换、行为模拟
2.2 环境配置
python
# requirements.txt httpx==0.24.0 beautifulsoup4==4.12.2 playwright==1.40.0 pandas==2.1.3 sqlalchemy==2.0.23 fake-use
订阅专栏 解锁全文
280

被折叠的 条评论
为什么被折叠?



