深度学习pytorch——减少过拟合的几种方法(持续更新)

1、增加数据集

2、正则化(Regularization)

正则化:得到一个更加简单的模型的方法。

以一个多项式为例:

随着最高次的增加,会得到一个更加复杂模型,模型越复杂就会更好的拟合输入数据的模型(图-1),拟合的程度越大,表现在参数上的现象就是高次的系数趋近于0,如果直接将趋近于0的高次去掉,就可以得到一个更加简单的模型,这种方法称为正则化

图-1

 直观的看,经过正则化的模型更加平滑(图-2).

图-2

 正则化的方法:

(1)L1-正则化:在原来的模型基础上加上一个 1-范数(这里使用二分类模型作为示例):

 (2)L2-正则化:在原来的模型基础上加上一个 2-范数(这里使用二分类模型作为示例):

 代码示例:

# L2-正则化
device = torch.device('cuda:0')
net = MLP.to(device)
optimizer = optim.SGD(net.parameters,lr = learning_rate,weight_decay=0.01) #weight_decay=0.01就代表进行L2-正则化
criteoon = nn.CrossEntropyLoss().to(device)
# L1-正则化
# 对于L1-正则化,pytorch并没有提供直接的方法,就只能使用人工去做了
regularization_loss = 0
for param in model.parameters():                # 相求1-范数的总和
    regularization_loss += torch.sum(torch.abs(param))

classify_loss = criteon(logits,target)
loss = classify_loss + 0.01*regularization_loss     # 再将得到的正则损失加入模型损失,其中0.01是1-范数总和前面的系数

optimizer.zero_grad()
loss.backward()
optimizer.step()

3、加入动量(momentum)

动量即惯性——本次向哪移动,还需要考虑上一次移动的方向。

正常更新梯度的公式(公式-1):

公式-1

加入动量之后的公式(公式-2):

公式-2

将z(k+1)带入梯度更新公式,即公式-1减去,其中Z(k)相当于上一次的梯度,系数\alpha和β的大小决定了是当前梯度对方向的决定性大,还是上一梯度对方向的决定性大。

当动量为0时的梯度更新情况(图-3):

图-3

 动量不为0时的梯度更新情况(图-4):

图-4

将图-3和图-4对比,可以得出动量不为0,即考虑上一梯度,梯度更新更加稳定,不会出现巨大的跳跃情况,并且不加动量的没有找到最小点,一直在局部最小值点徘徊,如果加入动量,考虑到上一梯度,可以在一定程度上解决这种情况(图-4是加入动量之后最好的情况)。

代码演示,直接在优化器部分使用momentum属性就可以了,但是如果使用Adam优化器,就不需要添加,因为在Adam优化器内部定义的有momentum属性:

4、学习率(Learning Rate ) 

不同学习率梯度更新情况(图-5):

图-5

当学习率太小的时候,梯度更新比较慢,需要较多次的更新。

当学习率太大的时候,梯度更新比较激烈,找到的极值点Loss太大。

如何找到正确的的学习率?

在训练之初,可以先设置一个较大的学习率加快更新的速度,然后逐步减小学习率,即设置一个动态学习率。

图-6

 从图-6,可以看到有一个突然下降的点,这个点就是学习率训练一些数据之后,学习率突然变小导致的结果。在此之前可以看到Loss趋于不变,可以合理的猜测是因为学习率太大了,出现了来回摇摆不定的情况(图-7):

图-7

 当学习率突然减小,梯度更新变慢,易找到极小点(图-8):

图-8

 代码演示:

 5、dropout

dropout:减少神经元之间的连接,减少模型的学习量。标准的神经网络是全连接的,相比经过dropout的神经网络减少了一些连接(图-9)。

图-9

代码演示,可以使用Dropout方法断开连接,0.5代表断开两层之间的50% :

 这种方法被用在模型训练中,但当模型测试过程中,为了提高test的表现,要结束这个操作,将所有的连接都使用上,可以使用net_dropped.eval()方法结束这个操作,代码演示如下:

6、随机梯度下降 (Strochastic Gradient Descent )

这里的随机并不是指任意,这里面是有一套规则的,是一套映射的关系,即将原来的数据x送入f(x)得到一种分布。经过随机从原数据中得到一组小数据,使用这一小组数据训练模型。

 学习:课时60 Early stopping, dropout等_哔哩哔哩_bilibili

  • 15
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
在迁移学习中,过拟合是一个常见的问题。过拟合指的是模型在训练集上表现良好,但在测试集或新数据上表现不佳的情况。 以下是一些可以应对过拟合问题的常见方法: 1. 数据增强(Data Augmentation):通过对训练数据进行随机变换(如旋转、翻转、裁剪等),增加数据的多样性,从而使模型更加泛化。 2. 正则化(Regularization):通过在损失函数中添加正则化项,限制模型的复杂度。常用的正则化方法有L1正则化和L2正则化。 3. 早停(Early Stopping):在训练过程中,监控模型在验证集上的性能。当验证集上的性能不再提升时,及时停止训练,以防止过拟合。 4. Dropout:在模型的隐藏层中引入Dropout层,随机丢弃一部分神经元的输出。这样可以减少神经网络的复杂度,提高模型泛化能力。 5. 模型复杂度控制:通过调整模型的大小、深度或宽度等参数,限制模型的容量。如果模型过于复杂,容易过拟合。 6. 增加训练数据量:通过收集更多的训练数据,可以帮助模型更好地学习数据的分布,减少过拟合的可能性。 7. 使用预训练模型的特征提取部分:在迁移学习中,通常可以冻结预训练模型的特征提取部分,只训练新添加的全连接层。这样可以减少模型的参数量,降低过拟合的风险。 以上方法可以单独或组合使用,具体的选择取决于你的任务和数据。通过使用这些方法,可以减轻模型的过拟合问题,提高模型在测试集或新数据上的性能。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值