最大均值差异(Maximum Mean Discrepancy (MMD))

最大均值差异是用来干什么的?

最大均值差异是用来衡量两个分布之间的差异,广泛应用于域适应、生成对抗网络(GANs)等场景。——MMD评价两堆数据是否具有相似性。

定义

寻找一个"well-behaved"函数f:x——>R∈F,使得下面的目标最大:

这个目标为什么能反应出分布P分布和Q分布之间的差异呢?

函数f将分布P和Q中的所有样本映射成一个实数,遍历函数空间F中所有的函数,将这两堆实数的均值差最大值用于衡量分布的差异。

如果P=Q,则对于任意的f,都有,故最大差异R=0。

如果P和Q很相似,则可能存在很多f使得,因此这些f并不能客观反映出P和Q之间的差异,所以需要选择一个合适的f,使得两个分布最不相似的特性被刻画出来。

参考:深入理解最大均值差异(Maximum Mean Discrepancy, MMD)_最大均值差异 对齐-CSDN博客

浅谈Maximum Mean Discrepancy (MMD) - 望天下 - 博客园 (cnblogs.com)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值