题目:八皇后问题
【问题描述】
编程解决八皇后问题,在
8*8
的棋盘上,放置八个皇后。要求这八个皇后不能相互攻击(不
能在同一行同一列和对角线),求出所有可能的方案,输出这些方案,并且求出方案总数。
【需求分析】
(1)
判断当前位置是否安全,输入当前位置的行和列。若安全,返回 1,若不安全,
返回 0。
(2)
打印棋盘,当皇后放置完毕以后,将棋盘打印出来,并且期盼总数++。
(3)
写一个函数,输入行数,可以在此行恰当位置放置皇后
【算法设计和实现】
主要函数
{
int
isSafe(
int
row
,
int
col
);
//检查当前位置是否安全
void
printBoard();
//打印棋盘
void
placeQueen(
int
row
);
//在当前行放置皇后
}
全局变量
{
int
board[
N
][
N
];
// 棋盘
int
count = 0;
// 统计解的数量
}
源代码
#include <stdio.h>
#define N 8 // 棋盘大小
int board[N][N]; // 棋盘
int count = 0; // 统计解的数量
int isSafe(int row, int col);//检查当前位置是否安全
void printBoard();//打印棋盘
void placeQueen(int row);//在当前行放置皇后
// 检查当前位置是否安全
int isSafe(int row, int col)
{
int i, j;
// 检查当前列是否有其他皇后
for (i = 0; i < row; i++)
{
if (board[i][col] == 1)
return 0;
}
//检查当前列是否存在其他皇后
for (j = 0; j < col; j++) {
if (board[row][j] == 1)
return 0;
}
// 检查当前左上对角线是否有其他皇后
for (i = row, j = col; i >= 0 && j >= 0; i--, j--)
{
if (board[i][j] == 1)
return 0;
}
// 检查当前右上对角线是否有其他皇后
for (i = row, j = col; i >= 0 && j < N; i--, j++)
{
if (board[i][j] == 1)
return 0;
}
// 检查当前左下对角线是否有其他皇后
for (i = row, j = col; i <N && j >=0 ; i++, j--)
{
if (board[i][j] == 1)
return 0;
}
// 检查当前右下对角线是否有其他皇后
for (i = row, j = col; i <N && j < N; i++, j++)
{
if (board[i][j] == 1)
return 0;
}
return 1; // 当前位置安全
}
// 打印棋盘
void printBoard()
{
int i, j;
printf("解 %d:\n", ++count);
for (i = 0; i < N; i++)
{
for (j = 0; j < N; j++)
{
printf("%d ", board[i][j]);
}
printf("\n");
}
printf("\n");
}
// 在当前行放置皇后
void placeQueen(int row)
{
int col;
if (row == N) // 所有行都放置完毕,找到一个解
{
printBoard();
return;
}
for (col = 0; col < N; col++)
{
if (isSafe(row, col)) // 当前位置安全,放置皇后
{
board[row][col] = 1;
placeQueen(row + 1); // 递归放置下一行的皇后
board[row][col] = 0; // 回溯,撤销当前位置的皇后
}
}
}
int main()
{
int i, j;
for (i = 0; i < N; i++)
{
for (j = 0; j < N; j++)
{
board[i][j] = 0; // 初始化棋盘
}
}
placeQueen(0); // 从第一行开始放置皇后
printf("共有 %d 种解法\n", count);
return 0;
}