C语言-回溯法-地图着色问题

1.问题描述

1.1设计内容

已知中国地图,对各省进行着色,要求相邻省所使用的颜色不同,并保证使用的颜色总数最少。

1.2设计要求

(1)设计该问题的核心算法;

(2)设计可视化的界面,界面中能显示和区分中国地图中各省、市、自治区;

(3)程序能正确对地图着色。

2.方法及基本思路

本题抽象出来其实就是着色问题:已知一个图,要求给图上每个点上色,并保证该点的颜色与它的邻接点的颜色都不相同。

回溯法的基本思想是:在解空间中,按深度优先策略,从根结点出发搜索,搜索至任一节点时,先判断该节点是否包含问题的解。如果不包含,则跳过以该节点为根的子节点,逐层向其父节点回溯。否则,进入该子树,继续按照深度优先策略搜索。

假设地图邻接关系如右所示,那么它的状态解空间树如左图所示:

3.算法描述

算法名称:回溯法

输入:34个省份

输出:每个省份的颜色

省份着色(Graph) :

 1. 初始化变量:

    着色颜色数 colorCount = 0

最小着色颜色数 minColorCount = ∞

 2. 对于图中的每个省份节点 v,设置其颜色 color[v] = 0

 3. 对于图中的每个省份节点 v,将其未使用的颜色 mark[v][c] = true

 4. 递归着色(0)  // 从第一个省份节点开始着色

 5. 输出结果最小着色颜色数 minColorCount

 递归着色(v) :

    1. 如果当前省份节点 v 是最后一个节点:

    更新最小着色颜色数 minColorCount = colorCount

    返回

    2. 对于每一种颜色 c 从 1 到 maxColors:

     If:省份节点 v 可以使用颜色 c:

     设置 color[v] = c

    对于省份节点 v 的每一个相邻节点 u,更新 mark[u][c] = false

     颜色数 colorCount++

     递归着色(v + 1)

     颜色数 colorCount --

    对于省份节点 v 的每一个相邻节点 u,更新 mark[u][c] = true

If: colorCount > minColorCount:

说明当前方案无效,回溯到上一个节点

4.时间空间复杂度分析

基本运算:比较

递归公式:T(N, k) = k * T(N-1, k-1)

时间复杂度:O(k^N)

在最坏情况下,算法需要遍历所有可能的颜色方案,所以时间复杂度为 O(k^N),其中 k 是可用的颜色数,N 是省份节点的数量。

空间复杂度:O(N)

递归调用栈的深度最大为省份节点的数量 N,所以空间复杂度为 O(N)。

5.算法实例

输入数据:输入34个省份以及各省邻接关系

输出数据:如下图,由于C语言不支持可视化,改为用省份颜色表示着色,一共得到四种颜色,且相邻省份颜色不同。

6.源码

参考链接

中国地图着色问题-CSDN博客

这位博主的代码可在Dev C++下运行;以下是我稍作修改,可以在VS2022中运行的代码,并为此添加了注释

#include <stdio.h>
#include <stdlib.h>
#include <Windows.h>
#include "string.h"
#include<time.h>

// 定义一个结构体ArcNode,表示省份之间的连接关系  
typedef struct ArcNode {
    int apn;    // 相邻省的序号,即连接的省份  
    struct ArcNode* nextarc; // 指向下一个ArcNode的指针,表示下一个连接的省份  
} ArcNode;

// 定义一个结构体VNode,表示一个省份的信息  
typedef struct VNode {
    char name[6];  
    int color;   
    int number;        
    ArcNode* firstarc; // 指向该省份的第一个连接关系的指针  
} VNode;

// 定义一个结构体DNode,表示双链表的一个节点  
typedef struct DLinkNode {
    struct VNode* data; // 指向VNode的指针,作为双链表节点的数据  
    struct DLinkNode* prior; // 指向前一个DLinkNode的指针  
    struct DLinkNode* next;  // 指向下一个DLinkNode的指针  
} DLinkNode;

// 定义一个数组,存储ArcNode的指针,最多可以存储145个省份的连接关系  
ArcNode* node[145], * p;
// 定义一个数组,存储VNode的实例,最多可以存储35个省份的信息  
VNode province[35];
// 定义一个二维数组,存储每个省份的颜色,最多可以存储35个省份的5种颜色(红、绿、蓝、黄、紫)  
int color[35][5];                                          


void Intput(VNode* province, ArcNode* node[]);      // 输入中国地图信息的函数,参数是省份和连接关系的数组  
 
void Initialization(VNode* province);       // 初始化各省颜色及颜色数组  
  
void Painting(VNode* province, ArcNode* p, int i);     // 对省份进行上色的函数,参数是省份和指向某个连接关系的指针和省份的序号

void Setcolor(int i);                // 设置输出颜色的函数,参数是颜色编号    

void Output(VNode* province, ArcNode* p);        输出信息的函数,参数是省份和指向某个连接关系的指针   
  
void Find(DLinkNode*& L, VNode* province, ArcNode* p);    // // 求最少着色颜色的函数,参数是双链表的头节点、省份数组和省份的数量  

void CreateListR(DLinkNode*& L, VNode* province, int n);   // // 使用尾插法创建双链表的函数,参数是双链表的头节点、省份数组和省份的数量  

int main() {
    DLinkNode* DuLinkLis; // 双链表的头节点指针  
    Intput(province, node); // 输入中国地图信息  
    CreateListR(DuLinkLis, province, 34); // 使用尾插法创建双链表  
    Find(DuLinkLis, province, p); // 求最少着色颜色数  
    return 0; 
}

// 输入中国地图信息的函数实现  
void Intput(VNode* province, ArcNode* node[]) {
    for (int i = 1; i < 145; i++) // 对145个连接关系进行初始化  
        node[i] = (ArcNode*)malloc(sizeof(ArcNode)); // 为每个连接关系分配内存空间并初始化为0  
    for (int i = 1; i < 145; i++) // 对每个连接关系设置相邻省的序号和指向下一个连接关系的指针  
        node[i]->nextarc = node[i + 1]; // node[i]->nextarc指向node[i+1],即每个连接关系的下一个连接关系是node[i+1]  


    strcpy_s(province[1].name, 20,"新疆");
    province[1].firstarc = node[1];
    node[1]->apn = 2;
    node[2]->apn = 3;
    node[3]->apn = 4;
    node[3]->nextarc = NULL;

    strcpy_s(province[2].name, 20,"西藏");
    province[2].firstarc = node[4];
    node[4]->apn = 1;
    node[5]->apn = 3;
    node[6]->apn = 7;
    node[7]->apn = 8;
    node[7]->nextarc = NULL;

    strcpy_s(province[3].name, 20,"青海");
    province[3].firstarc = node[8];
    node[8]->apn = 1;
    node[9]->apn = 2;
    node[10]->apn = 4;
    node[11]->apn = 7;
    node[11]->nextarc = NULL;

    strcpy_s(province[4].name,20, "甘肃");
    province[4].firstarc = node[12];
    node[12]->apn = 1;
    node[13]->apn = 3;
    node[14]->apn = 5;
    node[15]->apn = 6;
    node[16]->apn = 7;
    node[17]->apn = 9;
    node[17]->nextarc = NULL;

    strcpy_s(province[5].name,20, "内蒙古");
    province[5].firstarc = node[18];
    node[18]->apn = 4;
    node[19]->apn = 6;
    node[20]->apn = 9;
    node[21]->apn = 13;
    node[22]->apn = 21;
    node[23]->apn = 32;
    node[24]->apn = 33;
    node[25]->apn = 34;
    node[25]->nextarc = NULL;

    strcpy_s(province[6].name, 20,"宁夏");
    province[6].firstarc = node[26];
    node[26]->apn = 4;
    node[27]->apn = 5;
    node[28]->apn = 9;
    node[28]->nextarc = NULL;

    strcpy_s(province[7].name,20, "四川");
    province[7].firstarc = node[29];
    node[29]->apn = 2;
    node[30]->apn = 3;
    node[31]->apn = 4;
    node[32]->apn = 8;
    node[33]->apn = 9;
    node[34]->apn = 10;
    node[35]->apn = 11;
    node[35]->nextarc = NULL;

    strcpy_s(province[8].name, 20,"云南");
    province[8].firstarc = node[36];
    node[36]->apn = 2;
    node[37]->apn = 7;
    node[38]->apn = 11;
    node[39]->apn = 12;
    node[39]->nextarc = NULL;

    strcpy_s(province[9].name,20, "陕西");
    province[9].firstarc = node[40];
    node[40]->apn = 4;
    node[41]->apn = 5;
    node[42]->apn = 6;
    node[43]->apn = 7;
    node[44]->apn = 10;
    node[45]->apn = 13;
    node[46]->apn = 14;
    node[47]->apn = 15;
    node[47]->nextarc = NULL;

    strcpy_s(province[10].name, 20,"重庆");
    province[10].firstarc = node[48];
    node[48]->apn = 7;
    node[49]->apn = 9;
    node[50]->apn = 11;
    node[51]->apn = 15;
    node[52]->apn = 16;
    node[52]->nextarc = NULL;

    strcpy_s(province[11].name,20, "贵州");
    province[11].firstarc = node[53];
    node[53]->apn = 7;
    node[54]->apn = 8;
    node[55]->apn = 10;
    node[56]->apn = 12;
    node[57]->apn = 16;
    node[57]->nextarc = NULL;

    strcpy_s(province[12].name, 20,"广西");
    province[12].firstarc = node[58];
    node[58]->apn = 8;
    node[59]->apn = 11;
    node[60]->apn = 16;
    node[61]->apn = 17;
    node[61]->nextarc = NULL;

    strcpy_s(province[13].name, 20,"山西");
    province[13].firstarc = node[62];
    node[62]->apn = 5;
    node[63]->apn = 9;
    node[64]->apn = 14;
    node[65]->apn = 21;
    node[65]->nextarc = NULL;

    strcpy_s(province[14].name,20, "河南");
    province[14].firstarc = node[66];
    node[66]->apn = 9;
    node[67]->apn = 13;
    node[68]->apn = 15;
    node[69]->apn = 21;
    node[70]->apn = 24;
    node[71]->apn = 25;
    node[71]->nextarc = NULL;

    strcpy_s(province[15].name, 20,"湖北");
    province[15].firstarc = node[73];
    node[73]->apn = 9;
    node[74]->apn = 10;
    node[75]->apn = 14;
    node[76]->apn = 16;
    node[77]->apn = 25;
    node[78]->apn = 26;
    node[78]->nextarc = NULL;

    strcpy_s(province[16].name,20,"湖南");
    province[16].firstarc = node[79];
    node[79]->apn = 10;
    node[80]->apn = 11;
    node[81]->apn = 12;
    node[82]->apn = 15;
    node[83]->apn = 17;
    node[84]->apn = 26;
    node[84]->nextarc = NULL;

    strcpy_s(province[17].name,20, "广东");
    province[17].firstarc = node[85];
    node[85]->apn = 12;
    node[86]->apn = 16;
    node[87]->apn = 19;
    node[88]->apn = 20;
    node[89]->apn = 26;
    node[90]->apn = 30;
    node[90]->nextarc = NULL;

    strcpy_s(province[18].name, 20,"海南");
    province[18].firstarc = NULL;

    strcpy_s(province[19].name,20, "澳门");
    province[19].firstarc = node[91];
    node[91]->apn = 17;
    node[91]->nextarc = NULL;

    strcpy_s(province[20].name,20, "香港");
    province[20].firstarc = node[92];
    node[92]->apn = 17;
    node[92]->nextarc = NULL;

    strcpy_s(province[21].name,20, "河北");
    province[21].firstarc = node[93];
    node[93]->apn = 5;
    node[94]->apn = 13;
    node[95]->apn = 14;
    node[96]->apn = 22;
    node[97]->apn = 23;
    node[98]->apn = 24;
    node[99]->apn = 34;
    node[99]->nextarc = NULL;

    strcpy_s(province[22].name, 20,"北京");
    province[22].firstarc = node[100];
    node[100]->apn = 21;
    node[101]->apn = 23;
    node[101]->nextarc = NULL;

    strcpy_s(province[23].name,20, "天津");
    province[23].firstarc = node[102];
    node[102]->apn = 21;
    node[103]->apn = 22;
    node[103]->nextarc = NULL;

    strcpy_s(province[24].name,20, "山东");
    province[24].firstarc = node[104];
    node[104]->apn = 14;
    node[105]->apn = 21;
    node[106]->apn = 25;
    node[107]->apn = 27;
    node[107]->nextarc = NULL;

    strcpy_s(province[25].name, 20,"安徽");
    province[25].firstarc = node[108];
    node[108]->apn = 14;
    node[109]->apn = 15;
    node[110]->apn = 24;
    node[111]->apn = 26;
    node[112]->apn = 27;
    node[113]->apn = 29;
    node[113]->nextarc = NULL;

    strcpy_s(province[26].name, 20,"江西");
    province[26].firstarc = node[115];
    node[115]->apn = 15;
    node[116]->apn = 16;
    node[117]->apn = 17;
    node[118]->apn = 25;
    node[119]->apn = 29;
    node[120]->apn = 30;
    node[120]->nextarc = NULL;

    strcpy_s(province[27].name,20, "江苏");
    province[27].firstarc = node[122];
    node[122]->apn = 24;
    node[123]->apn = 25;
    node[124]->apn = 28;
    node[125]->apn = 29;
    node[125]->nextarc = NULL;

    strcpy_s(province[28].name,20, "上海");
    province[28].firstarc = node[126];
    node[126]->apn = 27;
    node[127]->apn = 29;
    node[127]->nextarc = NULL;

    strcpy_s(province[29].name,20, "浙江");
    province[29].firstarc = node[128];
    node[128]->apn = 17;
    node[129]->apn = 25;
    node[130]->apn = 26;
    node[131]->apn = 27;
    node[132]->apn = 28;
    node[132]->nextarc = NULL;

    strcpy_s(province[30].name, 20,"福建");
    province[30].firstarc = node[133];
    node[133]->apn = 17;
    node[134]->apn = 26;
    node[135]->apn = 29;
    node[135]->nextarc = NULL;

    strcpy_s(province[31].name,20, "台湾");
    province[31].firstarc = NULL;

    strcpy_s(province[32].name, 20,"黑龙江");
    province[32].firstarc = node[136];
    node[136]->apn = 5;
    node[137]->apn = 33;
    node[137]->nextarc = NULL;

    strcpy_s(province[33].name,20, "吉林");
    province[33].firstarc = node[138];
    node[138]->apn = 5;
    node[139]->apn = 32;
    node[140]->apn = 34;
    node[140]->nextarc = NULL;

    strcpy_s(province[34].name, 20,"辽宁");
    province[34].firstarc = node[141];
    node[141]->apn = 5;
    node[142]->apn = 21;
    node[143]->apn = 33;
    node[143]->nextarc = NULL;
}

// 初始化函数,对省份数组进行初始化  
void Initialization(VNode* province) {
    // 循环遍历34个省份  
    for (int i = 1; i <= 34; i++)
    {
        // 将省份的颜色初始化为0,表示未被使用  
        province[i].color = 0;
        // 设置省份的序号为i  
        province[i].number = i;
        // 对每个省份,为其颜色属性赋初值,从1到5  
        for (int j = 0; j < 5; j++)
            color[i][j] = j + 1;
    }
}

// 创建双链表的函数  
void CreateListR(DLinkNode*& L, VNode* province, int n) {
    // 定义创建双链表需要的指针s和r,L为双链表的头结点  
    DLinkNode* s, * r;
    // 为头结点分配内存空间  
    L = (DLinkNode*)malloc(sizeof(DLinkNode));   //创建头结点  
    // 设置头结点的prior和next指针为空  
    L->prior = L->next = NULL;
    // 设置头结点的数据为省份数组的第一个省份的信息  
    L->data = &province[1];
    // r指针始终指向双链表的终端结点,开始时指向头结点  
    r = L;     //r始终指向终端结点,开始时指向头结点  
    // 循环创建双链表的结点,从第二个省份开始,直到第n个省份  
    for (int i = 2; i <= n; i++)
    {
        // 为新结点分配内存空间  
        s = (DLinkNode*)malloc(sizeof(DLinkNode));//创建新结点  
        // 设置新结点的数据为当前省份的信息  
        s->data = &province[i];
        // 将新结点插入到r指针指向的结点之后  
        r->next = s; s->prior = r; //将结点s插入结点r之后  
        // r指针指向新插入的结点  
        r = s;
    }
    // 将双链表的尾结点的next指针指向头结点,形成环状结构  
    r->next = L;    //尾结点next域置为头节点  
    // 将头结点的prior指针指向尾结点,形成环状结构  
    L->prior = r;
}


void Painting(VNode* province, ArcNode* p, int i) {
    // 将p指向province数组中第i个省份的第一个邻接省份  
    p = province[i].firstarc;

    // 遍历该省份的所有邻接省份  
    while (p != NULL)
    {
        // 根据邻接省份的颜色值进行判断和操作  
        switch (province[p->apn].color)
        {
            // 如果邻接省份的颜色值为1,则将当前省份的第0列颜色值设为0 (第一种颜色为0已经使用,不再可用)
        case 1:color[i][0] = 0; break;
            // 如果邻接省份的颜色值为2,则将当前省份的第1列颜色值设为0  
        case 2:color[i][1] = 0; break;
            // 如果邻接省份的颜色值为3,则将当前省份的第2列颜色值设为0  
        case 3:color[i][2] = 0; break;
            // 如果邻接省份的颜色值为4,则将当前省份的第3列颜色值设为0  
        case 4:color[i][3] = 0; break;
            // 如果邻接省份的颜色值为5,则将当前省份的第4列颜色值设为0  
        case 5:color[i][4] = 0; break;
            // 如果邻接省份的颜色值不在1-5之间,不进行任何操作  
        default:break;
        }
        // 移动到下一个邻接省份  
        p = p->nextarc;
    }

    // 在当前省份可能被分配的5种颜色中,找出第一个非零颜色值并分配给当前省份  
    for (int j = 0; j < 5; j++)
    {
        // 如果第j列的颜色值不为0  
        if (color[i][j] != 0)
        {
            // 将第j列的颜色值赋给当前省份,并重置第j列的颜色值为0  
            province[i].color = color[i][j];
            color[i][j] = 0;
            // 跳出循环,因为已经找到了一个有效的颜色值  
            break;
        }
    }
}

void Setcolor(int i)  // 定义一个函数Setcolor,接收一个整数参数i  
{
    HANDLE handle = GetStdHandle(STD_OUTPUT_HANDLE);// 获取标准输出句柄是一个Windows API函数,用于获取标准输出的句柄。通过这个句柄,你可以对标准输出进行各种操作,比如改变文本颜色、设置文本位置等。
    switch (i)
    {
    case 1:SetConsoleTextAttribute(handle, FOREGROUND_INTENSITY | FOREGROUND_GREEN); break;//绿色
    case 2:SetConsoleTextAttribute(handle, FOREGROUND_INTENSITY | FOREGROUND_RED | FOREGROUND_GREEN); break;//黄色
    case 3:SetConsoleTextAttribute(handle, FOREGROUND_INTENSITY | FOREGROUND_RED); break;//红色
    case 4:SetConsoleTextAttribute(handle, FOREGROUND_INTENSITY | FOREGROUND_BLUE); break;//蓝色
    case 5:SetConsoleTextAttribute(handle, FOREGROUND_INTENSITY | FOREGROUND_RED | FOREGROUND_BLUE); break;//紫色
    case 6:SetConsoleTextAttribute(handle, FOREGROUND_INTENSITY | FOREGROUND_GREEN | FOREGROUND_BLUE); break;//浅蓝
    case 7:SetConsoleTextAttribute(handle, FOREGROUND_INTENSITY | FOREGROUND_RED | FOREGROUND_GREEN | FOREGROUND_BLUE); break;//白色
    case 8:SetConsoleTextAttribute(handle, FOREGROUND_RED | FOREGROUND_GREEN | FOREGROUND_BLUE); break;//默认低亮白色
    }
}

void Output(VNode* province, ArcNode* p) {  // 定义一个函数Output,接收两个指针参数:省份节点和弧节点  
    printf("\n中国34个省份颜色如下:\n");  // 打印提示信息,表示接下来将展示34个省份的颜色  

    for (int i = 1; i <= 34; i++)  // 遍历每个省份  
    {
        Setcolor(province[i].color);  // 设置当前省份的颜色  
        printf("%d %s\t", i, province[i].name);  // 打印省份的序号和名称  
        if (i % 12 == 0)  // 如果省份序号是12的倍数  
            printf("\n");  // 则换行  
    }
    Setcolor(8);  // 将颜色设置回默认颜色(8)  
    printf("\n\n");  // 打印两个换行符  

    printf("\n中国34个省份颜色及其各邻接省份颜色如下请查阅:\n");  // 打印提示信息,表示接下来将展示每个省份及其邻接省份的颜色  

    for (int j = 1; j <= 7; j++)  // 遍历每个颜色(这里假设有7种颜色)  
    {
        for (int i = 1; i <= 34; i++)  // 遍历每个省份  
            if (province[i].color == j)  // 如果该省份的颜色与当前颜色j相同  
            {
                Setcolor(province[i].color);  // 设置当前省份的颜色  
                printf("%d\t%s\t", i, province[i].name);  // 打印省份的序号、名称和颜色  
                Setcolor(8);  // 将颜色设置回默认颜色(8)  
                printf("邻接省份有:");  // 打印提示信息,表示接下来将展示该省份的邻接省份  
                p = province[i].firstarc;  // 从当前省份开始获取其邻接省份的弧节点  
                while (p != NULL)  // 遍历所有邻接省份的弧节点  
                {
                    Setcolor(province[p->apn].color);  // 设置邻接省份的颜色  
                    printf("%s ", province[p->apn].name);  // 打印邻接省份的名称和颜色  
                    p = p->nextarc;  // 移动到下一个邻接省份的弧节点  
                }
                printf("\n");  // 换行  
            }
        printf("\n");  // 在遍历完一个颜色后换行,使得每个颜色的省份都在新的一行上显示  
    }
    Setcolor(8);  // 将颜色设置回默认颜色(8)  
}  

void Find(DLinkNode*& L, VNode* province, ArcNode* p) {  // 函数声明,接收三个指针参数:双向链表L的引用、省份数组province和弧节点数组ArcNode。  
    DLinkNode* r = L, * s;  // 定义两个双向链表节点指针r和s,并初始化r为L的起始节点。  
    int Maxcolor = 2, Mincolor = 5;  // 定义两个整数变量Maxcolor和Mincolor,分别初始化为2和5。  
    do  // 开始一个do-while循环。  
    {
        s = r;  // 将s指向r。  
        Maxcolor = 2;  // 将Maxcolor重置为2。  
        Initialization(province);  // 调用Initialization函数来初始化省份数组province。  
        while (s != s->prior)  // 当s不等于其前驱节点时,执行循环。  
        {
            Painting(province, p, s->data->number);  // 调用Painting函数,传入省份数组、弧节点数组和当前节点的编号,对地图进行着色。  
            if (s->data->color > Maxcolor)  // 如果当前节点的颜色大于Maxcolor。  
                if (s->data->number != r->data->number)  // 如果当前节点的编号不等于r节点的编号。  
                {
                    s->data->color = 0;  // 将当前节点的颜色设置为0。  
                    for (int j = 0; j < 5; j++)  // 循环初始化颜色数组。  
                        color[s->data->number][j] = j + 1;
                    s = s->prior;  // 将s指向其前驱节点。  
                    goto a;  // 跳转到标签a。  
                }
                else  // 如果当前节点的编号等于r节点的编号。  
                {
                    printf("从第%d个省%s开始着色用%d种颜色着色失败\n", r->data->number, r->data->name, Maxcolor);  // 打印失败信息。  
                    Maxcolor++;  // 将Maxcolor增加1。  
                    Initialization(province);  // 重新初始化省份数组。  
                    s = r;  // 将s指向r。  
                    goto a;  // 跳转到标签a。  
                }
            if (s->data->number == r->prior->data->number)  // 如果当前节点的编号等于r的前驱节点的编号。  
            {
                printf("从第%d个省%s开始着色用%d种颜色着色成功", r->data->number, r->data->name, Maxcolor);  // 打印成功信息。  
                if (Maxcolor < Mincolor)Mincolor = Maxcolor;  // 如果Maxcolor小于Mincolor,则更新Mincolor为Maxcolor的值。  
                Output(province, p);  // 调用Output函数,输出省份和邻接省份的信息。  
                goto b;  // 跳转到标签b。  
            }
            s = s->next;  // 将s指向其下一个节点。  
        a:;  // 标签a,表示跳转点。  
        }
    b: r = r->next;  // 标签b,将r指向其下一个节点。继续下一次循环。  
    } while (r != L);  // 当r不等于L时,继续循环。循环结束条件是r等于L。  
    Setcolor(4);  // 设置文本颜色为4。  
    printf("\n对中国地图最少着色颜色数为%d种!!\n", Mincolor);  // 打印最少需要的颜色数。  
    Setcolor(8);  // 设置文本颜色为8,恢复默认颜色。  
    return;  
} 

七巧板着色问题是一个经典的NP完全问题,回溯法是一种常用的解法。 七巧板是由七个不同形状的小板组成的,要求用完所有小板,将它们拼成一个规定形状的大板,并且每个小板都要被染上一种颜色。这就是七巧板着色问题,其实质是将七巧板分别染成不同的颜色,使得它们拼成的大板符合要求。 回溯法的基本思想是从问题的某一种状态出发,搜索所有可能的解,当搜索到某一步时发现该步不能得到可行解时,就返回上一步继续搜索,直到找到解或者所有可能的状态都被搜索过。 具体实现时,我们可以从七巧板的某个小板开始,枚举该小板可能的位置和颜色,然后递归搜索下一个小板的位置和颜色。每次递归时,我们检查当前的状态是否合法,如果不合法就回溯到上一个状态继续搜索。 下面是C语言的实现代码: ```c #include <stdio.h> #include <stdbool.h> const int BOARD_SIZE = 35; // 大板的大小 const int BLOCK_NUM = 7; // 小块的数量 const int MAX_COLOR = 4; // 最多的颜色数 // 每个小块的形状和初始位置 const int blocks[BLOCK_NUM][4][2] = { {{0, 0}, {0, 1}, {0, 2}, {0, 3}}, // I {{0, 0}, {0, 1}, {1, 0}, {1, 1}}, // O {{0, 0}, {0, 1}, {0, 2}, {1, 1}}, // T {{0, 0}, {0, 1}, {0, 2}, {1, 2}}, // L {{0, 0}, {0, 1}, {0, 2}, {1, 0}}, // J {{0, 0}, {0, 1}, {1, 1}, {1, 2}}, // S {{0, 0}, {0, 1}, {1, 0}, {1, -1}} // Z }; int board[BOARD_SIZE][BOARD_SIZE]; // 大板 bool used_color[MAX_COLOR]; // 记录每种颜色是否已经使用过 // 判断当前状态是否合法 bool is_valid(int block_id, int color, int x, int y) { // 遍历小块的每个格子 for (int i = 0; i < 4; i++) { int nx = x + blocks[block_id][i][0]; int ny = y + blocks[block_id][i][1]; // 判断是否越界 if (nx < 0 || nx >= BOARD_SIZE || ny < 0 || ny >= BOARD_SIZE) { return false; } // 判断是否与相邻的小块颜色相同 if (board[nx][ny] >= 0 && board[nx][ny] == color) { return false; } } return true; } // 回溯搜索 bool backtrack(int block_id) { // 如果所有小块都已经染色,说明已经找到了可行解 if (block_id == BLOCK_NUM) { return true; } // 枚举当前小块可能的位置和颜色 for (int x = 0; x < BOARD_SIZE; x++) { for (int y = 0; y < BOARD_SIZE; y++) { for (int color = 0; color < MAX_COLOR; color++) { // 如果该颜色已经被使用过,跳过 if (used_color[color]) { continue; } // 判断是否可以将当前小块染成该颜色 if (is_valid(block_id, color, x, y)) { // 染色 for (int i = 0; i < 4; i++) { int nx = x + blocks[block_id][i][0]; int ny = y + blocks[block_id][i][1]; board[nx][ny] = color; } used_color[color] = true; // 递归搜索下一个小块 if (backtrack(block_id + 1)) { return true; } // 回溯 for (int i = 0; i < 4; i++) { int nx = x + blocks[block_id][i][0]; int ny = y + blocks[block_id][i][1]; board[nx][ny] = -1; } used_color[color] = false; } } } } return false; } int main() { // 初始化大板和颜色 for (int i = 0; i < BOARD_SIZE; i++) { for (int j = 0; j < BOARD_SIZE; j++) { board[i][j] = -1; } } for (int i = 0; i < MAX_COLOR; i++) { used_color[i] = false; } // 搜索可行解 if (backtrack(0)) { // 输出结果 for (int i = 0; i < BOARD_SIZE; i++) { for (int j = 0; j < BOARD_SIZE; j++) { printf("%d ", board[i][j]); } printf("\n"); } } else { printf("No solution.\n"); } return 0; } ``` 在上面的代码中,我们使用一个二维数组`board`表示大板的状态,-1表示该位置没有被染色,0~3表示四种颜色。使用一个布尔数组`used_color`记录每种颜色是否已经被使用过。`is_valid`函数用于判断当前状态是否合法,`backtrack`函数用于递归搜索解。 最后,我们在`main`函数中初始化大板和颜色,然后调用`backtrack`函数搜索可行解。如果找到了可行解,就输出结果;否则输出"No solution"。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

西唯兵欧泡

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值