利用CNN进行天气识别(pytorch版)


🍨 本文为🔗365天深度学习训练营 中的学习记录博客
🍖 原作者:K同学啊 | 接辅导、项目定制

一、前期准备

设置GPU

常规操作,导入相关的深度学习包,比如可视化包,图片处理包等。

import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets

import os,PIL,pathlib,random

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

device

二、导入数据并进行预处理

1、导入数据

  这里我们使用pathlib函数进行数据的导入,pathlib是Python标准库中处理文件路径的模块,提供了一种面向对象的方式来操作文件的系统路径;其中,path类是核心类,用于表示文件系统中的路径,有一个好处就是不用担心操作系统的差异。

data_dir = "/home/kaijiang/zlf/CSDN task/weather_photos/"
data_dir = pathlib.Path(data_dir)

data_paths = list(data_dir.glob('*'))#pathlib.Path中的global方法获取指定目录中的所有的文件和子目录的路径
classeNames = [str(path).split("\\")[0] for path in data_paths]#分割路径
classeNames

  这里我们将路径赋值给变量data_dir ,然后利用pathlib模块,其中pathlib模块提供了一种面向对象的操作文件路径的方式,pathlib.Path是 Python 中用于处理文件路径的类,提供了更简洁、易读的方式来操作文件路径。下面是pathlib.Path的基本用法示例:

from pathlib import Path
path = Path("/home/user/Documents/file.txt")
print("文件名:", path.name)
print("目录:", path.parent)
if path.exists():
    print("路径存在")
else:
    print("路径不存在")
if path.is_file():
    print("这是一个文件")
if path.is_dir():
    print("这是一个目录")
new_path = path / "new_folder" / "new_file.txt"
print("新路径:", new_path)

  通过使用 pathlib.Path(),可以方便地进行路径操作,而不需要担心不同操作系统之间的路径分隔符问题。glob()方法获得子目录然后进行路径的分割以后,运行代码,得到一下结果:
在这里插入图片描述

2、 将数据进行可视化

import matplotlib.pyplot as plt
from PIL import Image

# 指定图像文件夹路径
image_folder ="/home/kaijiang/zlf/CSDN task/weather_photos/sunrise/"

# 获取文件夹中的所有图像文件
image_files = [f for f in os.listdir(image_folder) if f.endswith((".jpg", ".png", ".jpeg"))]

# 创建Matplotlib图像
fig, axes = plt.subplots(3, 8, figsize=(16, 6))

# 使用列表推导式加载和显示图像
for ax, img_file in zip(axes.flat, image_files):
    img_path = os.path.join(image_folder, img_file)
    img = Image.open(img_path)
    ax.imshow(img)
    ax.axis('off')

# 显示图像
plt.tight_layout()
plt.show()

在这里插入图片描述

3、 数据预处理

total_datadir = '/home/kaijiang/zlf/CSDN task/weather_photos/'


train_transforms = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406], 
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])

total_data = datasets.ImageFolder(total_datadir,transform=train_transforms)
total_data

  这里我们使用了transforms.Compose函数,其用于将多个图像变换操作组合成一个串行的变换序列。这样可以方便地对数据集进行一系列预处理操作,例如裁剪、缩放、标准化等。
transforms.Compose([ transform1,transform2,transform3,可以包含更多的变换操作])

  datasets.ImageFolder是 PyTorch 中用于加载图像数据集的函数,通常用于处理文件夹结构中的图像数据集。该函数能够自动地将指定文件夹中的图像按照类别进行分类,并创建一个数据集对象。创建输出的数据集对象如下:
在这里插入图片描述

4、数据集的划分

train_size = int(0.8 * len(total_data))#训练集,总的数据集长度的百分之八十长度得到
test_size  = len(total_data) - train_size#测试集,总数据集减掉训练集得到
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
train_dataset, test_dataset

  torch.utils.data.random_split 函数通常用于将一个数据集随机分割成两个子集,常用于划分训练集和验证集。这个函数在 PyTorch 中的 torch.utils.data 模块中,可以按照指定的比例或数量来划分数据集。运行结果可以看到训练接和测试集的大小。

在这里插入图片描述

5、加载管理数据

batch_size = 32

train_dl = torch.utils.data.DataLoader(train_dataset,
                                       batch_size=batch_size,
                                       shuffle=True,
                                       num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,
                                      batch_size=batch_size,
                                      shuffle=True,
                                      num_workers=1)

  torch.utils.data.DataLoader函数使用方法参考
链接: link.

三、构建CNN网络

import torch.nn.functional as F

class Network_bn(nn.Module):
    def __init__(self):
        super(Network_bn, self).__init__()
        """
        nn.Conv2d()函数:
        第一个参数(in_channels)是输入的channel数量
        第二个参数(out_channels)是输出的channel数量
        第三个参数(kernel_size)是卷积核大小
        第四个参数(stride)是步长,默认为1
        第五个参数(padding)是填充大小,默认为0
        """
        self.conv1 = nn.Conv2d(in_channels=3, out_channels=12, kernel_size=5, stride=1, padding=0)
        self.bn1 = nn.BatchNorm2d(12)
        self.conv2 = nn.Conv2d(in_channels=12, out_channels=12, kernel_size=5, stride=1, padding=0)
        self.bn2 = nn.BatchNorm2d(12)
        self.pool = nn.MaxPool2d(2,2)
        self.conv4 = nn.Conv2d(in_channels=12, out_channels=24, kernel_size=5, stride=1, padding=0)
        self.bn4 = nn.BatchNorm2d(24)
        self.conv5 = nn.Conv2d(in_channels=24, out_channels=24, kernel_size=5, stride=1, padding=0)
        self.bn5 = nn.BatchNorm2d(24)
        self.fc1 = nn.Linear(24*50*50, len(classeNames))

    def forward(self, x):
        x = F.relu(self.bn1(self.conv1(x)))      
        x = F.relu(self.bn2(self.conv2(x)))     
        x = self.pool(x)                        
        x = F.relu(self.bn4(self.conv4(x)))     
        x = F.relu(self.bn5(self.conv5(x)))  
        x = self.pool(x)                        
        x = x.view(-1, 24*50*50)
        x = self.fc1(x)

        return x

device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))

model = Network_bn().to(device)
model

在这里插入图片描述

四、训练CNN网络

1、设置超参数

loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-4 # 学习率
opt        = torch.optim.SGD(model.parameters(),lr=learn_rate)

2、编写训练函数

def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小,一共60000张图片
    num_batches = len(dataloader)   # 批次数目,1875(60000/32)

    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
    
    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device)
        
        # 计算预测误差
        pred = model(X)          # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
        
        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()        # 反向传播
        optimizer.step()       # 每一步自动更新
        
        # 记录acc与loss
        train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
            
    train_acc  /= size
    train_loss /= num_batches

    return train_acc, train_loss

3、编写测试函数

def test (dataloader, model, loss_fn):
    size        = len(dataloader.dataset)  # 测试集的大小,一共10000张图片
    num_batches = len(dataloader)          # 批次数目,313(10000/32=312.5,向上取整)
    test_loss, test_acc = 0, 0
    
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)
            
            # 计算loss
            target_pred = model(imgs)
            loss        = loss_fn(target_pred, target)
            
            test_loss += loss.item()
            test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()

    test_acc  /= size
    test_loss /= num_batches

    return test_acc, test_loss

4、正式训练

epochs     = 30
train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []

for epoch in range(epochs):
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
    
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')

在这里插入图片描述
  上面学习率learn_rate = 1e-4,而当我们把学习率改大以后,即learn_rate = 1e-2,出现发散的结果,如下:
在这里插入图片描述
  如果学习率改为learn_rate = 1e-3,结果最后可以收敛,但是收敛得很慢,且测试 集正确率只能到82左右。

在这里插入图片描述

  如果我们把学习率进一步缩小,则会看到,测试集准确率从一开始就始终保持在百分之八十附近,这里我们设置为30个epoch,可能不足以改变,因为降低学习率导致训练收敛的速度变慢,可能需要更多是epoch才能达到最优解。

在这里插入图片描述

五、可视化结果

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

在这里插入图片描述

  • 14
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值