YOLOv5-backbone模块的实现


🍨 本文为🔗365天深度学习训练营 中的学习记录博客
* 🍖 原作者:K同学啊 | 接辅导、项目定制

一、前期准备

1、设置GPU

import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets
import os,PIL,pathlib,warnings

warnings.filterwarnings("ignore")             #忽略警告信息

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device

2、导入数据

import os,PIL,random,pathlib

data_dir = '/home/kaijiang/zlf/CSDN task/weather_photos/'
data_dir = pathlib.Path(data_dir)

data_paths  = list(data_dir.glob('*'))
classeNames = [str(path).split("\\")[0] for path in data_paths]
classeNames

在这里插入图片描述

3、划分数据集

train_transforms = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    # transforms.RandomHorizontalFlip(), # 随机水平翻转
    transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406], 
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])

test_transform = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406], 
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])

total_data = datasets.ImageFolder("/home/kaijiang/zlf/CSDN task/weather_photos/",transform=train_transforms)
total_data


train_size = int(0.8 * len(total_data))
test_size  = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
train_dataset, test_dataset

batch_size = 4

train_dl = torch.utils.data.DataLoader(train_dataset,
                                           batch_size=batch_size,
                                           shuffle=True,
                                           num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,
                                          batch_size=batch_size,
                                          shuffle=True,
                                          num_workers=1)
for X, y in test_dl:
    print("Shape of X [N, C, H, W]: ", X.shape)
    print("Shape of y: ", y.shape, y.dtype)
    break

二、搭建包含backbone模块的模型

1、搭建模型

import torch.nn.functional as F

def autopad(k, p=None):  # kernel, padding
    # Pad to 'same'
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
    return p

class Conv(nn.Module):
    # Standard convolution
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):  # ch_in, ch_out, kernel, stride, padding, groups
        super().__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
        self.bn = nn.BatchNorm2d(c2)
        self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())

    def forward(self, x):
        return self.act(self.bn(self.conv(x)))

class Bottleneck(nn.Module):
    # Standard bottleneck
    def __init__(self, c1, c2, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, shortcut, groups, expansion
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_, c2, 3, 1, g=g)
        self.add = shortcut and c1 == c2

    def forward(self, x):
        return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))

class C3(nn.Module):
    # CSP Bottleneck with 3 convolutions
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansion
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c1, c_, 1, 1)
        self.cv3 = Conv(2 * c_, c2, 1)  # act=FReLU(c2)
        self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))

    def forward(self, x):
        return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))
    
class SPPF(nn.Module):
    # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher
    def __init__(self, c1, c2, k=5):  # equivalent to SPP(k=(5, 9, 13))
        super().__init__()
        c_ = c1 // 2  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_ * 4, c2, 1, 1)
        self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)

    def forward(self, x):
        x = self.cv1(x)
        with warnings.catch_warnings():
            warnings.simplefilter('ignore')  # suppress torch 1.9.0 max_pool2d() warning
            y1 = self.m(x)
            y2 = self.m(y1)
            return self.cv2(torch.cat([x, y1, y2, self.m(y2)], 1))
"""
这个是YOLOv5, 6.0版本的主干网络,这里进行复现
(注:有部分删改,详细讲解将在后续进行展开)
"""
class YOLOv5_backbone(nn.Module):
    def __init__(self):
        super(YOLOv5_backbone, self).__init__()
        
        self.Conv_1 = Conv(3, 64, 3, 2, 2) 
        self.Conv_2 = Conv(64, 128, 3, 2) 
        self.C3_3   = C3(128,128)
        self.Conv_4 = Conv(128, 256, 3, 2) 
        self.C3_5   = C3(256,256)
        self.Conv_6 = Conv(256, 512, 3, 2) 
        self.C3_7   = C3(512,512)
        self.Conv_8 = Conv(512, 1024, 3, 2) 
        self.C3_9   = C3(1024, 1024)
        self.SPPF   = SPPF(1024, 1024, 5)
        
        # 全连接网络层,用于分类
        self.classifier = nn.Sequential(
            nn.Linear(in_features=65536, out_features=100),
            nn.ReLU(),
            nn.Linear(in_features=100, out_features=4)
        )
        
    def forward(self, x):
        x = self.Conv_1(x)
        x = self.Conv_2(x)
        x = self.C3_3(x)
        x = self.Conv_4(x)
        x = self.C3_5(x)
        x = self.Conv_6(x)
        x = self.C3_7(x)
        x = self.Conv_8(x)
        x = self.C3_9(x)
        x = self.SPPF(x)
        
        x = torch.flatten(x, start_dim=1)
        x = self.classifier(x)

        return x

device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))
    
model = YOLOv5_backbone().to(device)
model

以下是模型运行结果:

Using cuda device
YOLOv5_backbone(
(Conv_1): Conv(
(conv): Conv2d(3, 64, kernel_size=(3, 3), stride=(2, 2), padding=(2, 2), bias=False)
(bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(Conv_2): Conv(
(conv): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(C3_3): C3(
(cv1): Conv(
(conv): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(cv2): Conv(
(conv): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(cv3): Conv(
(conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(m): Sequential(
(0): Bottleneck(
(cv1): Conv(
(conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(cv2): Conv(
(conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
)
)
)
(Conv_4): Conv(
(conv): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(C3_5): C3(
(cv1): Conv(
(conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(cv2): Conv(
(conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(cv3): Conv(
(conv): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(m): Sequential(
(0): Bottleneck(
(cv1): Conv(
(conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(cv2): Conv(
(conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
)
)
)
(Conv_6): Conv(
(conv): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(C3_7): C3(
(cv1): Conv(
(conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(cv2): Conv(
(conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(cv3): Conv(
(conv): Conv2d(512, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(m): Sequential(
(0): Bottleneck(
(cv1): Conv(
(conv): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(cv2): Conv(
(conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
)
)
)
(Conv_8): Conv(
(conv): Conv2d(512, 1024, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(C3_9): C3(
(cv1): Conv(
(conv): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(cv2): Conv(
(conv): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(cv3): Conv(
(conv): Conv2d(1024, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(m): Sequential(
(0): Bottleneck(
(cv1): Conv(
(conv): Conv2d(512, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(cv2): Conv(
(conv): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
)
)
)
(SPPF): SPPF(
(cv1): Conv(
(conv): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(cv2): Conv(
(conv): Conv2d(2048, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(m): MaxPool2d(kernel_size=5, stride=1, padding=2, dilation=1, ceil_mode=False)
)
(classifier): Sequential(
(0): Linear(in_features=65536, out_features=100, bias=True)
(1): ReLU()
(2): Linear(in_features=100, out_features=4, bias=True)
)
)

2、查看模型详情

# 统计模型参数量以及其他指标
import torchsummary as summary
summary.summary(model, (3, 224, 224))

模型详述如下:
Layer (type) Output Shape Param #

        Conv2d-1         [-1, 64, 113, 113]           1,728
   BatchNorm2d-2         [-1, 64, 113, 113]             128
          SiLU-3         [-1, 64, 113, 113]               0
          Conv-4         [-1, 64, 113, 113]               0
        Conv2d-5          [-1, 128, 57, 57]          73,728
   BatchNorm2d-6          [-1, 128, 57, 57]             256
          SiLU-7          [-1, 128, 57, 57]               0
          Conv-8          [-1, 128, 57, 57]               0
        Conv2d-9           [-1, 64, 57, 57]           8,192
  BatchNorm2d-10           [-1, 64, 57, 57]             128
         SiLU-11           [-1, 64, 57, 57]               0
         Conv-12           [-1, 64, 57, 57]               0
       Conv2d-13           [-1, 64, 57, 57]           4,096
  BatchNorm2d-14           [-1, 64, 57, 57]             128
         SiLU-15           [-1, 64, 57, 57]               0
         Conv-16           [-1, 64, 57, 57]               0
       Conv2d-17           [-1, 64, 57, 57]          36,864
  BatchNorm2d-18           [-1, 64, 57, 57]             128
         SiLU-19           [-1, 64, 57, 57]               0
         Conv-20           [-1, 64, 57, 57]               0
   Bottleneck-21           [-1, 64, 57, 57]               0
       Conv2d-22           [-1, 64, 57, 57]           8,192
  BatchNorm2d-23           [-1, 64, 57, 57]             128
         SiLU-24           [-1, 64, 57, 57]               0
         Conv-25           [-1, 64, 57, 57]               0
       Conv2d-26          [-1, 128, 57, 57]          16,384
  BatchNorm2d-27          [-1, 128, 57, 57]             256
         SiLU-28          [-1, 128, 57, 57]               0
         Conv-29          [-1, 128, 57, 57]               0
           C3-30          [-1, 128, 57, 57]               0
       Conv2d-31          [-1, 256, 29, 29]         294,912
  BatchNorm2d-32          [-1, 256, 29, 29]             512
         SiLU-33          [-1, 256, 29, 29]               0
         Conv-34          [-1, 256, 29, 29]               0
       Conv2d-35          [-1, 128, 29, 29]          32,768
  BatchNorm2d-36          [-1, 128, 29, 29]             256
         SiLU-37          [-1, 128, 29, 29]               0
         Conv-38          [-1, 128, 29, 29]               0
       Conv2d-39          [-1, 128, 29, 29]          16,384
  BatchNorm2d-40          [-1, 128, 29, 29]             256
         SiLU-41          [-1, 128, 29, 29]               0
         Conv-42          [-1, 128, 29, 29]               0
       Conv2d-43          [-1, 128, 29, 29]         147,456
  BatchNorm2d-44          [-1, 128, 29, 29]             256
         SiLU-45          [-1, 128, 29, 29]               0
         Conv-46          [-1, 128, 29, 29]               0
   Bottleneck-47          [-1, 128, 29, 29]               0
       Conv2d-48          [-1, 128, 29, 29]          32,768
  BatchNorm2d-49          [-1, 128, 29, 29]             256
         SiLU-50          [-1, 128, 29, 29]               0
         Conv-51          [-1, 128, 29, 29]               0
       Conv2d-52          [-1, 256, 29, 29]          65,536
  BatchNorm2d-53          [-1, 256, 29, 29]             512
         SiLU-54          [-1, 256, 29, 29]               0
         Conv-55          [-1, 256, 29, 29]               0
           C3-56          [-1, 256, 29, 29]               0
       Conv2d-57          [-1, 512, 15, 15]       1,179,648
  BatchNorm2d-58          [-1, 512, 15, 15]           1,024
         SiLU-59          [-1, 512, 15, 15]               0
         Conv-60          [-1, 512, 15, 15]               0
       Conv2d-61          [-1, 256, 15, 15]         131,072
  BatchNorm2d-62          [-1, 256, 15, 15]             512
         SiLU-63          [-1, 256, 15, 15]               0
         Conv-64          [-1, 256, 15, 15]               0
       Conv2d-65          [-1, 256, 15, 15]          65,536
  BatchNorm2d-66          [-1, 256, 15, 15]             512
         SiLU-67          [-1, 256, 15, 15]               0
         Conv-68          [-1, 256, 15, 15]               0
       Conv2d-69          [-1, 256, 15, 15]         589,824
  BatchNorm2d-70          [-1, 256, 15, 15]             512
         SiLU-71          [-1, 256, 15, 15]               0
         Conv-72          [-1, 256, 15, 15]               0
   Bottleneck-73          [-1, 256, 15, 15]               0
       Conv2d-74          [-1, 256, 15, 15]         131,072
  BatchNorm2d-75          [-1, 256, 15, 15]             512
         SiLU-76          [-1, 256, 15, 15]               0
         Conv-77          [-1, 256, 15, 15]               0
       Conv2d-78          [-1, 512, 15, 15]         262,144
  BatchNorm2d-79          [-1, 512, 15, 15]           1,024
         SiLU-80          [-1, 512, 15, 15]               0
         Conv-81          [-1, 512, 15, 15]               0
           C3-82          [-1, 512, 15, 15]               0
       Conv2d-83           [-1, 1024, 8, 8]       4,718,592
  BatchNorm2d-84           [-1, 1024, 8, 8]           2,048
         SiLU-85           [-1, 1024, 8, 8]               0
         Conv-86           [-1, 1024, 8, 8]               0
       Conv2d-87            [-1, 512, 8, 8]         524,288
  BatchNorm2d-88            [-1, 512, 8, 8]           1,024
         SiLU-89            [-1, 512, 8, 8]               0
         Conv-90            [-1, 512, 8, 8]               0
       Conv2d-91            [-1, 512, 8, 8]         262,144
  BatchNorm2d-92            [-1, 512, 8, 8]           1,024
         SiLU-93            [-1, 512, 8, 8]               0
         Conv-94            [-1, 512, 8, 8]               0
       Conv2d-95            [-1, 512, 8, 8]       2,359,296
  BatchNorm2d-96            [-1, 512, 8, 8]           1,024
         SiLU-97            [-1, 512, 8, 8]               0
         Conv-98            [-1, 512, 8, 8]               0
   Bottleneck-99            [-1, 512, 8, 8]               0
      Conv2d-100            [-1, 512, 8, 8]         524,288
 BatchNorm2d-101            [-1, 512, 8, 8]           1,024
        SiLU-102            [-1, 512, 8, 8]               0
        Conv-103            [-1, 512, 8, 8]               0
      Conv2d-104           [-1, 1024, 8, 8]       1,048,576
 BatchNorm2d-105           [-1, 1024, 8, 8]           2,048
        SiLU-106           [-1, 1024, 8, 8]               0
        Conv-107           [-1, 1024, 8, 8]               0
          C3-108           [-1, 1024, 8, 8]               0
      Conv2d-109            [-1, 512, 8, 8]         524,288
 BatchNorm2d-110            [-1, 512, 8, 8]           1,024
        SiLU-111            [-1, 512, 8, 8]               0
        Conv-112            [-1, 512, 8, 8]               0
   MaxPool2d-113            [-1, 512, 8, 8]               0
   MaxPool2d-114            [-1, 512, 8, 8]               0
   MaxPool2d-115            [-1, 512, 8, 8]               0
      Conv2d-116           [-1, 1024, 8, 8]       2,097,152
 BatchNorm2d-117           [-1, 1024, 8, 8]           2,048
        SiLU-118           [-1, 1024, 8, 8]               0
        Conv-119           [-1, 1024, 8, 8]               0
        SPPF-120           [-1, 1024, 8, 8]               0
      Linear-121                  [-1, 100]       6,553,700
        ReLU-122                  [-1, 100]               0
      Linear-123                    [-1, 4]             404

================================================================
Total params: 21,729,592
Trainable params: 21,729,592
Non-trainable params: 0

Input size (MB): 0.57
Forward/backward pass size (MB): 137.59
Params size (MB): 82.89
Estimated Total Size (MB): 221.06

三、训练模型

1、编写训练函数

def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小
    num_batches = len(dataloader)   # 批次数目, (size/batch_size,向上取整)

    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
    
    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device)
        
        # 计算预测误差
        pred = model(X)          # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
        
        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()        # 反向传播
        optimizer.step()       # 每一步自动更新
        
        # 记录acc与loss
        train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
            
    train_acc  /= size
    train_loss /= num_batches

    return train_acc, train_loss

2、编写测试函数

def test (dataloader, model, loss_fn):
    size        = len(dataloader.dataset)  # 测试集的大小
    num_batches = len(dataloader)          # 批次数目, (size/batch_size,向上取整)
    test_loss, test_acc = 0, 0
    
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)
            
            # 计算loss
            target_pred = model(imgs)
            loss        = loss_fn(target_pred, target)
            
            test_loss += loss.item()
            test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()

    test_acc  /= size
    test_loss /= num_batches

    return test_acc, test_loss

3、正式训练

import copy

optimizer  = torch.optim.Adam(model.parameters(), lr= 1e-4)
loss_fn    = nn.CrossEntropyLoss() # 创建损失函数

epochs     = 20

train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []

best_acc = 0    # 设置一个最佳准确率,作为最佳模型的判别指标

for epoch in range(epochs):
    
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)
    
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    
    # 保存最佳模型到 best_model
    if epoch_test_acc > best_acc:
        best_acc   = epoch_test_acc
        best_model = copy.deepcopy(model)
    
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    # 获取当前的学习率
    lr = optimizer.state_dict()['param_groups'][0]['lr']
    
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, 
                          epoch_test_acc*100, epoch_test_loss, lr))
    
# 保存最佳模型到文件中
PATH = '/home/kaijiang/zlf/CSDN task/weather_photos/best_model.pth'  # 保存的参数文件名
torch.save(model.state_dict(), PATH)

print('Done')

Epoch: 1, Train_acc:59.2%, Train_loss:1.081, Test_acc:64.0%, Test_loss:0.860, Lr:1.00E-04
Epoch: 2, Train_acc:66.8%, Train_loss:0.825, Test_acc:70.7%, Test_loss:0.682, Lr:1.00E-04
Epoch: 3, Train_acc:73.9%, Train_loss:0.647, Test_acc:67.6%, Test_loss:0.787, Lr:1.00E-04
Epoch: 4, Train_acc:78.3%, Train_loss:0.580, Test_acc:77.8%, Test_loss:0.625, Lr:1.00E-04
Epoch: 5, Train_acc:80.6%, Train_loss:0.506, Test_acc:84.9%, Test_loss:0.471, Lr:1.00E-04
Epoch: 6, Train_acc:85.0%, Train_loss:0.390, Test_acc:84.9%, Test_loss:0.483, Lr:1.00E-04
Epoch: 7, Train_acc:84.9%, Train_loss:0.397, Test_acc:84.0%, Test_loss:0.458, Lr:1.00E-04
Epoch: 8, Train_acc:88.0%, Train_loss:0.365, Test_acc:86.2%, Test_loss:0.397, Lr:1.00E-04
Epoch: 9, Train_acc:90.3%, Train_loss:0.274, Test_acc:86.2%, Test_loss:0.390, Lr:1.00E-04
Epoch:10, Train_acc:89.9%, Train_loss:0.255, Test_acc:86.7%, Test_loss:0.451, Lr:1.00E-04
Epoch:11, Train_acc:92.0%, Train_loss:0.222, Test_acc:88.0%, Test_loss:0.485, Lr:1.00E-04
Epoch:12, Train_acc:92.1%, Train_loss:0.192, Test_acc:87.1%, Test_loss:0.582, Lr:1.00E-04
Epoch:13, Train_acc:93.8%, Train_loss:0.164, Test_acc:92.9%, Test_loss:0.340, Lr:1.00E-04
Epoch:14, Train_acc:94.1%, Train_loss:0.152, Test_acc:85.8%, Test_loss:0.492, Lr:1.00E-04
Epoch:15, Train_acc:94.9%, Train_loss:0.150, Test_acc:92.0%, Test_loss:0.386, Lr:1.00E-04
Epoch:16, Train_acc:92.8%, Train_loss:0.175, Test_acc:87.6%, Test_loss:0.449, Lr:1.00E-04
Epoch:17, Train_acc:93.8%, Train_loss:0.160, Test_acc:85.8%, Test_loss:0.499, Lr:1.00E-04
Epoch:18, Train_acc:93.9%, Train_loss:0.179, Test_acc:88.9%, Test_loss:0.385, Lr:1.00E-04
Epoch:19, Train_acc:95.9%, Train_loss:0.106, Test_acc:85.8%, Test_loss:0.564, Lr:1.00E-04
Epoch:20, Train_acc:97.4%, Train_loss:0.070, Test_acc:89.3%, Test_loss:0.481, Lr:1.00E-04
Epoch:21, Train_acc:96.9%, Train_loss:0.081, Test_acc:88.0%, Test_loss:0.629, Lr:1.00E-04
Epoch:22, Train_acc:97.1%, Train_loss:0.074, Test_acc:86.7%, Test_loss:0.672, Lr:1.00E-04
Epoch:23, Train_acc:96.0%, Train_loss:0.103, Test_acc:88.9%, Test_loss:0.496, Lr:1.00E-04
Epoch:24, Train_acc:96.4%, Train_loss:0.102, Test_acc:90.7%, Test_loss:0.534, Lr:1.00E-04
Epoch:25, Train_acc:95.9%, Train_loss:0.138, Test_acc:88.4%, Test_loss:0.520, Lr:1.00E-04
Epoch:26, Train_acc:97.1%, Train_loss:0.077, Test_acc:91.6%, Test_loss:0.440, Lr:1.00E-04
Epoch:27, Train_acc:99.0%, Train_loss:0.030, Test_acc:90.7%, Test_loss:0.461, Lr:1.00E-04
Epoch:28, Train_acc:97.0%, Train_loss:0.099, Test_acc:88.9%, Test_loss:0.510, Lr:1.00E-04
Epoch:29, Train_acc:99.2%, Train_loss:0.032, Test_acc:89.8%, Test_loss:0.503, Lr:1.00E-04
Epoch:30, Train_acc:98.8%, Train_loss:0.037, Test_acc:88.9%, Test_loss:0.625, Lr:1.00E-04
Epoch:31, Train_acc:99.0%, Train_loss:0.029, Test_acc:89.8%, Test_loss:0.531, Lr:1.00E-04
Epoch:32, Train_acc:97.4%, Train_loss:0.069, Test_acc:87.6%, Test_loss:0.566, Lr:1.00E-04
Epoch:33, Train_acc:97.0%, Train_loss:0.107, Test_acc:88.0%, Test_loss:0.573, Lr:1.00E-04
Epoch:34, Train_acc:97.4%, Train_loss:0.079, Test_acc:87.6%, Test_loss:0.665, Lr:1.00E-04
Epoch:35, Train_acc:97.4%, Train_loss:0.085, Test_acc:87.6%, Test_loss:0.643, Lr:1.00E-04
Epoch:36, Train_acc:98.2%, Train_loss:0.045, Test_acc:90.7%, Test_loss:0.482, Lr:1.00E-04
Epoch:37, Train_acc:96.9%, Train_loss:0.091, Test_acc:87.6%, Test_loss:0.584, Lr:1.00E-04
Epoch:38, Train_acc:99.4%, Train_loss:0.021, Test_acc:89.8%, Test_loss:0.491, Lr:1.00E-04
Epoch:39, Train_acc:99.3%, Train_loss:0.022, Test_acc:89.8%, Test_loss:0.555, Lr:1.00E-04
Epoch:40, Train_acc:99.6%, Train_loss:0.010, Test_acc:90.2%, Test_loss:0.549, Lr:1.00E-04
Epoch:41, Train_acc:100.0%, Train_loss:0.004, Test_acc:90.7%, Test_loss:0.574, Lr:1.00E-04
Epoch:42, Train_acc:100.0%, Train_loss:0.004, Test_acc:90.2%, Test_loss:0.534, Lr:1.00E-04
Epoch:43, Train_acc:98.8%, Train_loss:0.039, Test_acc:88.0%, Test_loss:0.704, Lr:1.00E-04
Epoch:44, Train_acc:97.0%, Train_loss:0.100, Test_acc:86.7%, Test_loss:0.745, Lr:1.00E-04
Epoch:45, Train_acc:96.4%, Train_loss:0.110, Test_acc:74.7%, Test_loss:2.640, Lr:1.00E-04
Epoch:46, Train_acc:97.2%, Train_loss:0.073, Test_acc:85.3%, Test_loss:0.621, Lr:1.00E-04
Epoch:47, Train_acc:99.7%, Train_loss:0.014, Test_acc:91.1%, Test_loss:0.531, Lr:1.00E-04
Epoch:48, Train_acc:99.6%, Train_loss:0.019, Test_acc:90.7%, Test_loss:0.631, Lr:1.00E-04
Epoch:49, Train_acc:99.2%, Train_loss:0.022, Test_acc:91.1%, Test_loss:0.623, Lr:1.00E-04
Epoch:50, Train_acc:99.9%, Train_loss:0.009, Test_acc:91.1%, Test_loss:0.689, Lr:1.00E-04
Epoch:51, Train_acc:99.4%, Train_loss:0.020, Test_acc:89.3%, Test_loss:0.556, Lr:1.00E-04
Epoch:52, Train_acc:100.0%, Train_loss:0.004, Test_acc:90.2%, Test_loss:0.599, Lr:1.00E-04
Epoch:53, Train_acc:100.0%, Train_loss:0.002, Test_acc:90.7%, Test_loss:0.613, Lr:1.00E-04
Epoch:54, Train_acc:100.0%, Train_loss:0.001, Test_acc:90.2%, Test_loss:0.651, Lr:1.00E-04
Epoch:55, Train_acc:95.6%, Train_loss:0.119, Test_acc:87.1%, Test_loss:0.983, Lr:1.00E-04
Epoch:56, Train_acc:98.6%, Train_loss:0.053, Test_acc:88.9%, Test_loss:0.609, Lr:1.00E-04
Epoch:57, Train_acc:98.6%, Train_loss:0.032, Test_acc:87.1%, Test_loss:0.777, Lr:1.00E-04
Epoch:58, Train_acc:99.6%, Train_loss:0.012, Test_acc:89.3%, Test_loss:0.743, Lr:1.00E-04
Epoch:59, Train_acc:99.2%, Train_loss:0.028, Test_acc:88.4%, Test_loss:0.771, Lr:1.00E-04
Epoch:60, Train_acc:98.4%, Train_loss:0.049, Test_acc:80.4%, Test_loss:1.197, Lr:1.00E-04
Done

四、可视化

1、损失与准确率图

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

在这里插入图片描述

2、模型评估

# 将参数加载到model当中
best_model.load_state_dict(torch.load(PATH, map_location=device))
epoch_test_acc, epoch_test_loss = test(test_dl, best_model, loss_fn)
epoch_test_acc, epoch_test_loss

(0.9288888888888889, 0.33752005384207895)

  • 33
    点赞
  • 29
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值