自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(36)
  • 收藏
  • 关注

原创 基于python+mysql的酒店管理系统

本文介绍了一个基于FastAPI和MySQL的现代化在线酒店预订管理系统。系统采用前后端分离架构,后端提供RESTful API,前端使用Bootstrap框架。核心功能包括用户管理(注册登录、会员等级)、酒店搜索与预订、房间管理、价格策略、优惠券系统、评论功能等。数据库包含11个主要表,如用户表、酒店表、预订表等。系统架构清晰,分为前端页面层、FastAPI后端服务层和MySQL数据库层,支持多种API端点操作。该项目结构规范,包含应用主目录、静态文件、数据库脚本等模块,是一个功能完善的酒店预订管理平台。

2026-01-29 14:56:56 575

原创 【无标题】

摘要: 策略模型(Policy Model)是强化学习中的核心决策组件,通过参数化模型(如神经网络)实现状态到动作的映射,分为确定性策略(直接输出动作)和随机策略(输出动作分布)。其训练通过策略梯度或Actor-Critic架构,依赖环境交互而非人工标注数据,以最大化长期回报为目标。策略模型广泛应用于游戏AI、机器人控制、对话系统及大模型对齐(RLHF)等领域,但面临样本效率低、探索困难等挑战。前沿方向包括模仿学习、离线强化学习及通用策略范式(如LLM作为策略模型)。作为智能体的“决策大脑”,策略模型是AI

2026-01-15 08:18:26 427

原创 Smart Excalidraw ----基于 AI 的智能图表生成工具

Smart Excalidraw 是一个AI驱动的智能图表生成工具,通过自然语言描述即可自动生成专业级Excalidraw图表。该项目采用前后端分离架构,支持多种大语言模型提供商,具备独创的连接算法和20+种图表类型。核心功能包括智能规划、生成、优化和验证四步流程,支持流式响应和多模态输入。技术栈包含Next.js前端和FastAPI后端,提供完善的API文档和开发指南。用户只需配置API密钥即可开箱即用,生成的图表可直接在Excalidraw画布上编辑。项目采用Docker部署,支持本地开发测试。

2025-12-18 09:15:45 908

原创 害虫检测系统 - 功能详细说明文档

摘要 害虫检测系统是一个基于YOLOv8深度学习模型的智能检测平台,具备用户管理、害虫检测和社区交流三大核心功能。系统支持12种常见农林害虫的识别,包括蚂蚁、蜜蜂、甲虫等,提供图片、视频和实时视频流三种检测方式。主要功能模块包括:用户认证与权限管理(注册、登录、密码重置)、害虫检测(图片/视频/实时检测)、检测历史管理(记录查看、PDF报告生成)以及交流论坛(帖子发布、评论、点赞)。系统采用前后端分离架构,使用JWT进行身份验证,并通过权限管理控制不同用户角色的访问权限。

2025-11-25 08:03:10 88

原创 基于u-net的人体分割检测系统(fastapi+vue)

CIHP人体解析分割系统是一个基于改进UNet模型的Web应用,实现人体图像的20类精确分割。系统采用前后端分离架构,前端使用Vue3+Element Plus构建,后端基于FastAPI框架,数据存储采用SQLite。主要功能包括:1)用户认证体系,支持JWT Token验证和密码加密;2)三级权限管理(用户/管理员/超级管理员);3)图像分割处理流程,包含预处理、模型推理和后处理。系统通过分层设计确保各模块高效协作,为用户提供安全便捷的人体解析服务。

2025-09-25 07:41:33 634

原创 【YOLO毕设】基于YOLO11的PCB检测模型对比和检测系统

本文详细讲述了基于yolo V11的PCB缺陷检测的对比实验和检测系统的构建我们对比了基础的模型和集成C2PSA注意力机制和iRMB模块的改进版本以及效果最好的EfficientNetV2骨干网络版本。最后我们将这三个模型集成到检测系统,系统框架由后端flask和HTML构成,包含图片检测,视频检测,批量检测和检测历史等功能。用户选择不同的功能可以进行不同类型的检测任务,对于系统的使用与发布视频在b站。

2025-09-06 10:05:46 1007

原创 YOLO+Pyqt一键打包成exe(可视化,以v5为例)

本文介绍了使用auto-py-to-exe工具将PyQt5和YOLOv5项目打包为EXE文件的完整流程。首先需要安装必要的Python依赖库,包括torch、opencv、PyQt5等。然后通过auto-py-to-exe的图形界面选择主脚本、设置单文件模式、添加模型和资源文件,并配置自定义图标。文章详细说明了打包过程的关键步骤,包括文件选择、输出设置和常见问题解决方案。最终生成独立的EXE文件,可直接运行实现图片目标检测功能。文中还提供了界面截图展示打包配置和最终效果,并给出了闪退、模型加载失败等问题的调

2025-07-31 23:12:03 670

原创 基于YOLOv5+pyQT6的目标检测系统通用项目模板

本文介绍了一个基于YOLOv5和PyQt6的目标检测系统开发项目。该系统集成了YOLOv5模型,支持图片、视频和摄像头实时检测,具备GPU加速和多线程处理能力。系统采用暗黑风格UI设计,提供直观的操作界面,包括参数调节、类别筛选、告警记录和日志保存等功能。技术栈采用PyQt6构建GUI,PyTorch运行YOLOv5模型,OpenCV处理图像/视频。该系统具有高度可配置性,可作为目标检测项目的开发模板,通过替换模型文件即可应用于不同场景。

2025-07-23 23:16:03 785

原创 LangChain表达式 (LCEL)初识

LCEL是LangChain提供的声明式编程语言,专为简化LLM工作流设计。它通过管道操作符"|"连接组件(如提示模板、模型、输出解析器),实现从简单提示到复杂RAG系统的流程编排。示例展示了如何构建笑话生成器和问答系统:前者通过prompt|model|parser链式调用,后者使用RunnableParallel并行处理检索与问题传递。LCEL支持原型到生产的无缝迁移,内置流式处理、并行执行和日志功能,使开发者能高效构建和调试AI应用。

2025-07-22 14:25:03 764

原创 基于RAG的编程知识问答助手(C++为例)

本文摘要: 本研究针对程序设计学习领域知识获取效率低、模型幻觉泛滥等问题,设计开发了基于RAG架构的C++程序设计智能问答系统。系统采用LangChain框架实现文档处理与检索增强流程,通过Ollama平台本地部署7B参数的Deepseek-R1模型,结合Flask+HTML5构建轻量化Web服务。系统特色包括:支持多模态知识库动态扩增,采用bge-large-zh-v1.5模型生成词向量,利用FAISS管理向量库实现高效检索。实验表明,该系统在知识检索效率、回答准确性和交互体验方面表现优异。未来将拓展多模

2025-07-12 15:24:07 918

原创 MonkeyOCR在Win系统部署指南和报错提醒

本文介绍了在Windows11+RTX4090环境下部署MonkeyOCR项目的完整流程。首先通过Git下载源码并配置Python环境,使用ModelScope下载模型文件。遇到的主要问题包括:模块导入路径错误(通过sys.path修正)、缺少依赖包(安装dill和triton-windows)以及poppler路径缺失(下载poppler并配置环境变量)。通过修改demo_gradio.py文件,添加poppler路径并调整异常处理逻辑后,系统成功运行。相比多模态大模型,该方案展现出更快的解析速度。文章详

2025-06-24 16:29:54 1986 4

原创 基于Flask的链家二手房数据分析可视化(附源码)

本文构建了一个基于Scrapy爬虫、Flask+MySQL和机器学习技术的链家合肥二手房数据分析可视化系统。系统实现了数据采集(Scrapy高效抓取链家网合肥二手房数据)、存储管理(Flask+MySQL后端服务)和可视化分析(房价趋势、区域分布等交互图表)三大模块,并具备用户管理、房屋价格预测(机器学习模型)和信息词云分析功能。测试表明系统能有效采集和分析市场数据,为购房决策和政策制定提供支持。论文为房地产市场数据分析提供了技术参考,并提出了功能扩展与性能优化的未来方向。

2025-06-22 00:37:05 1845 1

原创 基于YOLO的智能车辆检测与记录系统

本文介绍了一个基于YOLO的智能车辆检测与记录系统开发。系统采用YOLOv8n模型,通过专业标注工具构建包含7类目标的车辆数据集,经数据增强后训练得出mAP@0.5达92.3%的检测模型。在此基础上开发了QT交互系统,支持图像/视频/实时摄像头输入,具备多线程处理、置信度调节、可视化统计及数据导出功能,解决了UI重叠和卡顿等技术难点。系统检测速度达25 FPS(CPU),可应用于交通监控、智能停车等场景,后续将进一步扩展多目标检测功能。

2025-06-22 00:00:06 803

原创 基于YOLO的语义分割实战(以猪的分割为例)

本文介绍了基于YOLOv8m-seg模型的语义分割训练流程。首先需要准备数据集并配置data.yaml文件,指定训练、验证和测试集的绝对路径。训练代码使用PyTorch框架,从YAML文件构建模型并加载预训练权重,设置150个epoch和256像素的输入尺寸进行训练。训练结果会保存在runs目录下,整个过程与目标检测类似。文末提供了pig分割数据集的下载链接,方便读者获取训练资源。

2025-06-20 20:10:10 756

原创 基于YOLOv8+Deepface的人脸检测与识别系统

摘要:人脸检测与识别系统采用深度学习技术,提供注册和删除两种操作模式,支持图片、视频和实时摄像头检测。注册模式用绿色标记新人脸并存储至数据库,删除模式用红色/蓝色标记匹配人脸并支持移除。系统基于Python+PyQt5+OpenCV开发,采用YOLOv8检测和Facenet提取特征,实现实时多目标跟踪。人脸特征以512维向量形式存储在CSV中,支持安全删除和自动备份。系统界面直观,包含图像显示区、模式选择和控制面板,通过颜色标注(绿/红/蓝)清晰标示不同状态的人脸,适用于安防、考勤等场景。

2025-06-15 22:38:15 1400 6

原创 基于YOLOv8(10,11,12)的金属表面缺陷检测(可加改进)

【摘要】该项目基于YOLOv8系列算法开发了金属表面缺陷检测系统,包含完整的训练与检测工作流。系统架构分为训练模块(含训练脚本和预训练模型)、检测系统(支持GUI界面和四种输入方式)、VOC格式数据集(含947MB原始数据)及辅助资源。核心功能包括:多源数据输入(图片/视频/摄像头)、缺陷精准识别(划痕/凹陷/裂纹等)、可视化输出(带坐标检测框)、参数配置系统(GPU加速/阈值调节)以及结构化结果管理(含历史追溯和数据导出)。系统展示了0.45置信度阈值下的实时检测效果,支持性能监控和检测结果导出。(150

2025-05-22 23:14:29 691 1

原创 基于Hadoop的合肥链接二手房数据可视化(附爬虫源码)

本文介绍了一种基于Scrapy、Flask+MySQL和Hadoop的链家合肥二手房数据分析可视化系统。系统首先利用Scrapy框架高效抓取链家网合肥地区二手房的详细数据,包括价格、面积、户型等信息。接着,通过Flask框架结合MySQL数据库实现数据的存储与管理,并引入Hadoop分布式计算框架进行大规模数据的清洗、整合与分析。最后,系统通过可视化工具将分析结果以图表形式展示,如房价趋势图、区域分布热力图等,为用户提供直观的市场洞察。该系统不仅能够高效采集、存储和分析二手房数据,还为房地产市场分析提供了技

2025-05-21 20:36:21 1152

原创 基于LSTM的轴承振动信号故障判断系统

本文提出了一种基于LSTM(长短期记忆网络)的轴承振动故障诊断方法,旨在解决传统频谱分析方法在复杂工况下适应性差的问题。通过振动传感器采集轴承运行时域信号,利用LSTM网络对振动信号的时序特征进行深度挖掘,能够有效提取振动信号中的长短期依赖特征,实现10种不同故障类型的准确识别。研究采用Python进行算法实现,基于Pytorch框架搭建深度学习网络,并利用Matplotlib进行振动特征可视化分析。实验结果表明,该方法在故障识别中达到99.2%的平均准确率,显著优于传统RNN模型。此外,本文还设计了一个基

2025-05-21 09:04:46 1625

原创 基于Flask的boss职位分析(爬虫可用)

本文介绍了一个基于Flask框架的Boss职位数据分析和可视化系统。该系统通过爬虫技术从Boss直聘网站获取职位信息,经过数据清洗后存入MySQL数据库,并提供了职位统计、搜索、数据分析和词云图等功能。系统包括用户登录、注册、职位搜索、历史记录查询等模块,并支持管理员对数据库进行管理。登录和注册功能通过Flask路由和前端表单实现,数据验证和用户信息存储通过MySQL数据库完成。系统还提供了职位点击历史记录功能,记录用户对职位的点击次数和时间。数据分析模块包括地区、行业、学历、工作经验等多维度的分析图表,帮

2025-05-19 15:10:18 468

原创 【无标题】基于python的口红数据分析和推荐系统

随着时代的发展和变化,在线购物成为主流,越来越多的人对口红产生了浓厚的兴趣,尤其是在女性消费者中,口红已成为日常化妆的必备单品。本文通过网络爬虫技术,结合数据可视化分析的方法,详细分析了淘宝平台上的口红销售数据。通过对口红产品的销售数据、用户评价、购买行为等多角度的分析,揭示了知名美妆品牌产品的销售趋势、消费者的购买特点和用户的偏好。研究还特别关注了不同颜色、质地、价格区间等口红产品的受欢迎程度,进一步反映出消费者的购买动机和消费习惯。此外,本文还通过可视化技术,将复杂多样的数据转化为直观、易懂的图表,帮助

2025-05-18 22:47:18 1813

原创 基于Flask+爬虫+echarts的微博话题分析系统(附源码+爬虫可用)

本系统基于Python技术栈构建,通过定向爬虫实时抓取微博话题数据,结合自然语言处理技术实现话题传播分析与情感倾向挖掘。系统采用Flask框架搭建Web服务,配合ECharts可视化组件,提供多维度、交互式的数据看板,帮助用户快速掌握话题传播路径、热点区域、核心用户及舆情走向,为社交媒体监测提供决策支持。

2025-04-28 23:51:42 412

原创 基于深度学习的人脸识别门禁系统(附源码)

随着信息技术的飞速发展,传统的门禁系统在安全性和便捷性方面存在一定的不足。尤其在人脸识别技术的快速进步下,基于深度学习的智能门禁系统成为一种理想的解决方案。本文提出了一种基于深度学习的人脸识别门禁系统,该系统结合了 PyQt 图形界面、MySQL 数据库管理与深度学习算法,通过实时识别人脸信息并进行身份验证,实现了对门禁系统的高效管理。系统的核心算法基于卷积神经网络(CNN)进行人脸特征的提取与匹配,确保了人脸识别的高准确率和实时性。

2025-04-07 20:28:36 814

原创 根据名称爬取Bing浏览器照片(源码)

根据名称爬取必应照片

2025-03-14 11:22:58 330

原创 基于SpringBoot + Vue的二手交易平台的设计与实现(附源码)

基于springboot+vue的二手交易平台的设计与实现

2025-03-10 10:37:24 1538

原创 基于springboot+vue的电影资源推荐系统(附源码和开发文档视频)

(附源码)基于springboot+vue的电影资源推送系统,前后端分离项目

2025-03-04 17:36:39 219

原创 基于Django+vue的在线考试系统(附源码)

基于python的django+vue的前后端分离项目,在线考试系统

2025-03-01 17:02:23 1112

原创 ONLY在线商城系统设计与实现(springboot)

基于springboot的ONLY在线商城系统设计与实现,附源码

2025-02-28 11:15:28 875

原创 (毕设)基于改进YOLOv8的危险驾驶行为检测附源码

本研究旨在提高交通安全和改善驾驶习惯,通过实时监测驾驶员行为并及时发出警报来预防交通事故。研究背景是随着汽车保有量的增加和智能交通系统的兴起,驾驶员行为监测技术变得尤为重要。本研究的主要目标是利用YOLOv8算法提高对驾驶危险行为的识别准确性,并实现系统的实时响应研究方法包括采用YOLOv8模型进行目标检测,结合检测头和分类头预测目标定位框,以及使用pyttsx3模块进行语言合成技术,以实现轻量化的语音反馈。

2025-02-25 11:20:46 1634

原创 基于springboot+vue的旅游管理系统(附源码)

随着旅游业的迅速发展,传统的旅游信息查询方式,已经无法满足用户需求,因此,结合计算机技术的优势和普及,针对常州旅游,特开发了本基于Bootstrap的常州地方旅游管理系统。本论文首先对常州地方旅游管理系统进行需求分析,从系统开发环境、系统目标、设计流程、功能设计等几个方面进行系统的总体设计,开发出本基于Bootstrap的常州地方旅游管理系统,主要实现了用户功能模块和管理员功能模块两大部分,用户可查看景点信息、景点资讯等,注册登录后可进行景点订票操作,同时管理员可进入系统后台对系统进行全面管理操作。

2025-02-25 11:03:57 1171

原创 爬虫学习(一):处理GET、POST请求

爬虫学习1

2025-01-13 22:29:32 451

原创 windows系统没有Hyper-V选项、功能

启动hpyer-V

2024-09-05 23:14:23 1316

原创 Incremental Transformer Structure EnhancedImage Inpainting with Masking Positional Encoding笔记

近年来,图像修复取得了重大进展。然而,恢复具有生动纹理和合理结构的损坏图像仍然具有挑战性。由于卷积神经网络 (CNN) 的感受野有限,一些特定方法只能处理常规纹理,同时失去整体结构。另一方面,基于注意力的模型可以更好地学习结构恢复的长程依赖性,但它们受到大图像尺寸推理的大量计算的限制。为了解决这些问题,我们建议利用一个额外的结构恢复器来促进图像的增量修复。所提出的模型在固定的低分辨率草图空间中,通过强大的基于注意力的转换器模型恢复整体图像结构。这样的灰度空间很容易被上采样到更大的比例,以传达正确的结构信息。

2024-06-16 18:53:52 1175

原创 web框架

Web概述发展历程静态页面:静态页面是浏览器向服务器发送HTTP请求,服务器返回静态HTML信息。动态内容:动态内容是Web服务器将请求发送给CGI应用程序,再将CGI应用程序动态生成的HTML页面返回客户端。脚本语言:HTML返回中固定部分存起来(称为模板),动态部分标记出来,Web请求处理的时候,程序先把部分动态内容被嵌入到模板中,最终返回完整的HTML。Web框架:MVC是一种典型的关注点分离思想,不仅使得代码复用性和组织性更好,web应用的配置性和灵活性也更好。Web。

2024-06-16 13:57:35 1156

原创 mySQL数据库基础(python)

MySQL简介数据库(Database)是按照数据结构来组织、存储和管理数据的仓库,每个数据库都有一个或多个不同的API用于创建,访问,管理,搜索和复制所保存的数据;我们使用关系型数据库管理系统(RDBMS)来存储和管理的大数据量。MySQL是一个关系型数据库管理系统,或叫MySQL是一种关联数据库管理系统,关联数据库将数据保存在不同的表中,而不是将所有数据放在一个大仓库内,这样就增加了速度并提高了灵活性。MySQL的特点功能强大支持跨平台运行速度快成本低支持各种开发语言。

2024-06-12 22:00:48 895

原创 LSTM的原理理解

LSTM,即长短期记忆网络(Long Short-Term Memory),是一种常用于处理序列数据的深度学习模型,特别适用于处理具有长期依赖关系的序列数据。LSTM通过引入专门的记忆单元和门控机制,能够有效地捕捉和存储长期依赖关系,从而在处理时间序列数据时取得良好的效果。相比于传统的循环神经网络(RNN),LSTM通过避免梯度消失或梯度爆炸等问题,更好地保留了序列数据中的长期依赖信息。

2024-05-28 23:05:39 1000

原创 批量归一化(BATCH NORM)

批量归一化的理解

2024-05-28 20:54:25 2626

12中农业害虫目标检测,yolo训练格式

农业害虫检测数据集 (Agricultural Pest Detection Dataset) 数据集概览 这是一个用于目标检测的农业害虫数据集,包含12种常见农业害虫的图像和标注数据。 | **训练集 (Train)** | 11,502 | 11,502 | 87.5% | | **验证集 (Valid)** | 1,095 | 1,095 | 8.3% | | **测试集 (Test)** | 546 | 546 | 4.2% | 数据集包含以下12种农业害虫类别: | 索引 | 类别名称 (英文) | 类别名称 (中文) | |-----|--------------|--------------| | 0 | Ants | 蚂蚁 | | 1 | Bees | 蜜蜂 | | 2 | Beetles | 甲虫 | | 3 | Caterpillars | 毛毛虫 | | 4 | Earthworms | 蚯蚓 | | 5 | Earwigs | 蠼螋 | | 6 | Grasshoppers | 蚱蜢 | | 7 | Moths | 飞蛾 | | 8 | Slugs | 蛞蝓 | | 9 | Snails | 蜗牛 | | 10 | Wasps | 黄蜂 | | 11 | Weevils | 象鼻虫 | **类别总数 (nc):** 12 应用场景 本数据集适用于: - 农业害虫自动识别系统 - 智能农业监测 - 害虫防治决策支持 - 目标检测模型训练与评估 - 计算机视觉研究

2025-11-20

智能编程小车目标检测数据集

上千张标注好的智能编程小车目标检测数据集(YOLO格式),下载直接训练即可。附data.yaml path: C:\Users\20860\Desktop\car_datasets\datasets\car # dataset root dir train: images/train # train images (relative to 'path') 128 images val: images/val # val images (relative to 'path') 128 images test: images/test # test images (optional) # Classes names: 0: car

2025-06-22

语义分割数据集-pig-seg

1000张标注好的YOLO格式语义分割数据集,附data.yaml文件,里面内置: train: C:\Users\Xang\PycharmProjects\pig-instance-segmentation\dataset\train\images val: C:\Users\Xang\PycharmProjects\pig-instance-segmentation\dataset\valid\images test: C:\Users\Xang\PycharmProjects\pig-instance-segmentation\dataset\test\images nc: 1 names: ['pig'] roboflow: workspace: testecontagem project: teste-uggpc version: 4 license: CC BY 4.0 url: https://universe.roboflow.com/testecontagem/teste-uggpc/dataset/4

2025-06-20

【计算机视觉】基于自适应关键帧采样的视频相似度检测算法:融合ORB特征与PCA降维的分段时序建模种新颖的视频

内容概要:本文提出了一种基于关键帧特征提取的视频相似度检测方法,旨在解决视频相似度计算中的三大核心科学问题:时序特征的表达能力与效率平衡、特征表示中的语义鸿沟以及跨视频可比性建模。该方法通过自适应关键帧采样、分层特征表示和分段时序建模三个阶段实现高效准确的视频内容比对。首先,采用自适应关键帧采样算法,根据视频长度动态调整采样间隔,确保不同长度视频的公平比较。其次,使用ORB特征描述符构建局部特征矩阵,并通过主成分分析(PCA)进行特征降维,消除冗余信息。最后,将视频划分为多个时序段落,分别计算各段落的余弦相似度并加权平均,有效捕捉视频的时序结构特征。实验表明,该方法在版权保护、内容查重等应用场景中表现出色,为多媒体内容分析提供了可靠的技术支持。 适合人群:从事多媒体内容分析、视频处理、版权保护等相关领域的研究人员和技术人员。 使用场景及目标:①适用于需要高效准确量化视频相似度的应用场景,如版权保护、内容查重、视频检索等;②通过自适应采样、特征降维和分段策略,提升视频相似度计算的效率和准确性。 其他说明:本文提出的算法不仅在技术上有所创新,还通过多种优化策略提高了计算效率和鲁棒性。未来工作将聚焦于多模态融合、深度学习集成和边缘计算优化,进一步提升视频相似度检测的性能。

2025-06-19

python web基础

python web基础

2024-06-12

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除