数论 - 高斯消元

数学上,高斯消元法(或译:高斯消去法),是线性代数规划中的一个算法,可用来为线性方程组求解,其核心是:

1)两方程互换,解不变;
2)一方程乘以非零数k,解不变;
3)一方程乘以数k加上另一方程,解不变 。

一、高斯消元解线性方程组

1.题目描述

输入一个包含 n 个方程 n 个未知数的线性方程组。

方程组中的系数为实数。

求解这个方程组。

下图为一个包含 m 个方程 n 个未知数的线性方程组示例:

9a504fc2d5628535be9dcb5f90ef76c6a7ef634a.gif

输入格式

第一行包含整数 n。

接下来 n 行,每行包含 n+1 个实数,表示一个方程的 n 个系数以及等号右侧的常数。

输出格式

如果给定线性方程组存在唯一解,则输出共 n 行,其中第 i 行输出第 i 个未知数的解,结果保留两位小数。

注意:本题有 SPJ,当输出结果为 0.00 时,输出 -0.00 也会判对。在数学中,一般没有正零或负零的概念,所以严格来说应当输出 0.00,但是考虑到本题作为一道模板题,考察点并不在于此,在此处卡住大多同学的代码没有太大意义,故增加 SPJ,对输出 -0.00 的代码也予以判对。

如果给定线性方程组存在无数解,则输出 Infinite group solutions

如果给定线性方程组无解,则输出 No solution

数据范围

1≤n≤100,
所有输入系数以及常数均保留两位小数,绝对值均不超过 100。

输入样例:
3
1.00 2.00 -1.00 -6.00
2.00 1.00 -3.00 -9.00
-1.00 -1.00 2.00 7.00
输出样例:
1.00
-2.00
3.00

2.算法思路

  1. 系数矩阵化为上三角矩阵:枚举每一列c
  • 找到绝对值最大的一行
  • 将该行与最上面一行(第一行)交换
  • 将该行的第一个数变成1(该行同时除以该数)
  • 将下面所有行的第c列变成0
  • 在下一次进行操作时不需要再考虑这一行
  1. 上三角矩阵化为对角矩阵:从后往前枚举对角线上的每一个1
  • 用这个1消掉其他行的该列数
  • 这个步骤可以省略,可以直接对最后一列常数列操作
  1. 判断:
  • 如果恰好化为对角矩阵,则有唯一一组解
  • 如果最后一行稀疏矩阵全为0,但是最后的常数项不是0,则没有解
  • 如果最后一行稀疏矩阵全为0,最后的常数项也是0,则无穷解

3.代码

#include <iostream>
#include <cstring>
#include <algorithm>
#include <cmath>

using namespace std;

const int N = 110;
const double eps = 1e-8;

int n;
double a[N][N];

int gauss()  // 高斯消元,答案存于a[i][n]中,0 <= i < n
{
    int c, r;
    for (c = 0, r = 0; c < n; c ++ )
    {
        int t = r;
        for (int i = r; i < n; i ++ )  // 找绝对值最大的行
            if (fabs(a[i][c]) > fabs(a[t][c]))
                t = i;

        if (fabs(a[t][c]) < eps) continue;

        for (int i = c; i <= n; i ++ ) swap(a[t][i], a[r][i]);  // 将绝对值最大的行换到最顶端
        for (int i = n; i >= c; i -- ) a[r][i] /= a[r][c];  // 将当前行的首位变成1
        for (int i = r + 1; i < n; i ++ )  // 用当前行将下面所有的列消成0
            if (fabs(a[i][c]) > eps)
                for (int j = n; j >= c; j -- )
                    a[i][j] -= a[r][j] * a[i][c];

        r ++ ;
    }

    if (r < n)
    {
        for (int i = r; i < n; i ++ )
            if (fabs(a[i][n]) > eps)
                return 2; // 无解
        return 1; // 有无穷多组解
    }

    for (int i = n - 1; i >= 0; i -- )
        for (int j = i + 1; j < n; j ++ )
            a[i][n] -= a[i][j] * a[j][n];

    return 0; // 有唯一解
}


int main()
{
    scanf("%d", &n);
    for (int i = 0; i < n; i ++ )
        for (int j = 0; j < n + 1; j ++ )
            scanf("%lf", &a[i][j]);

    int t = gauss();
    if (t == 2) puts("No solution");
    else if (t == 1) puts("Infinite group solutions");
    else
    {
        for (int i = 0; i < n; i ++ )
            printf("%.2lf\n", a[i][n]);
    }

    return 0;
}

二、高斯消元解异或线性方程组

1.题目描述

输入一个包含 n 个方程 n 个未知数的异或线性方程组。

方程组中的系数和常数为 0 或 1,每个未知数的取值也为 0 或 1。

求解这个方程组。

异或线性方程组示例如下:

M[1][1]x[1] ^ M[1][2]x[2] ^ … ^ M[1][n]x[n] = B[1]
M[2][1]x[1] ^ M[2][2]x[2] ^ … ^ M[2][n]x[n] = B[2]
…
M[n][1]x[1] ^ M[n][2]x[2] ^ … ^ M[n][n]x[n] = B[n]

其中 ^ 表示异或(XOR),M[i][j] 表示第 i 个式子中 x[j] 的系数,B[i] 是第 i 个方程右端的常数,取值均为 0 或 1。

输入格式

第一行包含整数 n。

接下来 n 行,每行包含 n+1 个整数 0 或 1,表示一个方程的 n 个系数以及等号右侧的常数。

输出格式

如果给定线性方程组存在唯一解,则输出共 n 行,其中第 i 行输出第 i 个未知数的解。

如果给定线性方程组存在多组解,则输出 Multiple sets of solutions

如果给定线性方程组无解,则输出 No solution

数据范围

1≤n≤100

输入样例:
3
1 1 0 1
0 1 1 0
1 0 0 1
输出样例:
1
0
0

2.算法思路

思路与上一题完全一致,唯一区别在于运算不同,全部变为异或运算

  1. 化为上三角矩阵的处理变成直接异或
  2. 化为对角矩阵的处理变成异或另外两项相乘

3.代码

#include <iostream>
#include <algorithm>

using namespace std;

const int N = 110;


int n;
int a[N][N];


int gauss()
{
    int c, r;
    for (c = 0, r = 0; c < n; c ++ )
    {
        int t = r;
        for (int i = r; i < n; i ++ )
            if (a[i][c])
                t = i;

        if (!a[t][c]) continue;

        for (int i = c; i <= n; i ++ ) swap(a[r][i], a[t][i]);
        for (int i = r + 1; i < n; i ++ )
            if (a[i][c])
                for (int j = n; j >= c; j -- )
                    a[i][j] ^= a[r][j];

        r ++ ;
    }

    if (r < n)
    {
        for (int i = r; i < n; i ++ )
            if (a[i][n])
                return 2;
        return 1;
    }

    for (int i = n - 1; i >= 0; i -- )
        for (int j = i + 1; j < n; j ++ )
            a[i][n] ^= a[i][j] * a[j][n];

    return 0;
}


int main()
{
    cin >> n;

    for (int i = 0; i < n; i ++ )
        for (int j = 0; j < n + 1; j ++ )
            cin >> a[i][j];

    int t = gauss();

    if (t == 0)
    {
        for (int i = 0; i < n; i ++ ) cout << a[i][n] << endl;
    }
    else if (t == 1) puts("Multiple sets of solutions");
    else puts("No solution");

    return 0;
}
  • 16
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
《初等数论及其应用》是一本关于数论的教材,介绍了数论的基本概念、定理和证明方法,并探讨了数论在实际问题中的应用。 数论是数学的一个分支,研究整数的性质和规律。《初等数论及其应用》首先介绍了整数、素数、最大公因数和最小公倍数等基本概念。然后讨论了素数的性质,包括素数的无穷性、素数分布的规律和素数定理等。接着介绍了数论中的重要定理,如费马小定理、欧拉定理和中国剩余定理等,以及它们的证明方法。此外,书中还包含了一些经典的数论问题和解法,如高斯平方和、尼科彻斯定理和无穷数列求和等。 除了介绍基本概念和定理外,该书还强调了数论在密码学、编码理论和计算机科学等领域中的应用。其中,密码学是数论的一个重要应用方向,通过利用数论中的一些难题和性质,可以设计出安全可靠的密码算法。此外,编码理论是应用数论研究信号编码和纠错编码的一门学科,数论中的一些技术和方法对编码理论的研究具有重要意义。计算机科学领域也广泛应用了数论中的一些概念和方法,如素数测试、大整数运算和随机数生成等。 总之,《初等数论及其应用》是一本系统介绍数论基本概念、定理和应用的教材。通过学习该书,读者可以了解数论的基础知识,掌握数论的基本方法和证明技巧,并了解数论在实际问题中的广泛应用。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值