文章目录
数学上,高斯消元法(或译:高斯消去法),是线性代数规划中的一个算法,可用来为线性方程组求解,其核心是:
1)两方程互换,解不变;
2)一方程乘以非零数k,解不变;
3)一方程乘以数k加上另一方程,解不变 。
一、高斯消元解线性方程组
1.题目描述
输入一个包含 n 个方程 n 个未知数的线性方程组。
方程组中的系数为实数。
求解这个方程组。
下图为一个包含 m 个方程 n 个未知数的线性方程组示例:
输入格式
第一行包含整数 n。
接下来 n 行,每行包含 n+1 个实数,表示一个方程的 n 个系数以及等号右侧的常数。
输出格式
如果给定线性方程组存在唯一解,则输出共 n 行,其中第 i 行输出第 i 个未知数的解,结果保留两位小数。
注意:本题有 SPJ,当输出结果为 0.00
时,输出 -0.00
也会判对。在数学中,一般没有正零或负零的概念,所以严格来说应当输出 0.00
,但是考虑到本题作为一道模板题,考察点并不在于此,在此处卡住大多同学的代码没有太大意义,故增加 SPJ,对输出 -0.00
的代码也予以判对。
如果给定线性方程组存在无数解,则输出 Infinite group solutions
。
如果给定线性方程组无解,则输出 No solution
。
数据范围
1≤n≤100,
所有输入系数以及常数均保留两位小数,绝对值均不超过 100。
输入样例:
3
1.00 2.00 -1.00 -6.00
2.00 1.00 -3.00 -9.00
-1.00 -1.00 2.00 7.00
输出样例:
1.00
-2.00
3.00
2.算法思路
- 系数矩阵化为上三角矩阵:枚举每一列c
- 找到绝对值最大的一行
- 将该行与最上面一行(第一行)交换
- 将该行的第一个数变成1(该行同时除以该数)
- 将下面所有行的第c列变成0
- 在下一次进行操作时不需要再考虑这一行
- 上三角矩阵化为对角矩阵:从后往前枚举对角线上的每一个1
- 用这个1消掉其他行的该列数
- 这个步骤可以省略,可以直接对最后一列常数列操作
- 判断:
- 如果恰好化为对角矩阵,则有唯一一组解
- 如果最后一行稀疏矩阵全为0,但是最后的常数项不是0,则没有解
- 如果最后一行稀疏矩阵全为0,最后的常数项也是0,则无穷解
3.代码
#include <iostream>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
const int N = 110;
const double eps = 1e-8;
int n;
double a[N][N];
int gauss() // 高斯消元,答案存于a[i][n]中,0 <= i < n
{
int c, r;
for (c = 0, r = 0; c < n; c ++ )
{
int t = r;
for (int i = r; i < n; i ++ ) // 找绝对值最大的行
if (fabs(a[i][c]) > fabs(a[t][c]))
t = i;
if (fabs(a[t][c]) < eps) continue;
for (int i = c; i <= n; i ++ ) swap(a[t][i], a[r][i]); // 将绝对值最大的行换到最顶端
for (int i = n; i >= c; i -- ) a[r][i] /= a[r][c]; // 将当前行的首位变成1
for (int i = r + 1; i < n; i ++ ) // 用当前行将下面所有的列消成0
if (fabs(a[i][c]) > eps)
for (int j = n; j >= c; j -- )
a[i][j] -= a[r][j] * a[i][c];
r ++ ;
}
if (r < n)
{
for (int i = r; i < n; i ++ )
if (fabs(a[i][n]) > eps)
return 2; // 无解
return 1; // 有无穷多组解
}
for (int i = n - 1; i >= 0; i -- )
for (int j = i + 1; j < n; j ++ )
a[i][n] -= a[i][j] * a[j][n];
return 0; // 有唯一解
}
int main()
{
scanf("%d", &n);
for (int i = 0; i < n; i ++ )
for (int j = 0; j < n + 1; j ++ )
scanf("%lf", &a[i][j]);
int t = gauss();
if (t == 2) puts("No solution");
else if (t == 1) puts("Infinite group solutions");
else
{
for (int i = 0; i < n; i ++ )
printf("%.2lf\n", a[i][n]);
}
return 0;
}
二、高斯消元解异或线性方程组
1.题目描述
输入一个包含 n 个方程 n 个未知数的异或线性方程组。
方程组中的系数和常数为 0 或 1,每个未知数的取值也为 0 或 1。
求解这个方程组。
异或线性方程组示例如下:
M[1][1]x[1] ^ M[1][2]x[2] ^ … ^ M[1][n]x[n] = B[1]
M[2][1]x[1] ^ M[2][2]x[2] ^ … ^ M[2][n]x[n] = B[2]
…
M[n][1]x[1] ^ M[n][2]x[2] ^ … ^ M[n][n]x[n] = B[n]
其中 ^
表示异或(XOR),M[i][j] 表示第 i 个式子中 x[j] 的系数,B[i] 是第 i 个方程右端的常数,取值均为 0 或 1。
输入格式
第一行包含整数 n。
接下来 n 行,每行包含 n+1 个整数 0 或 1,表示一个方程的 n 个系数以及等号右侧的常数。
输出格式
如果给定线性方程组存在唯一解,则输出共 n 行,其中第 i 行输出第 i 个未知数的解。
如果给定线性方程组存在多组解,则输出 Multiple sets of solutions
。
如果给定线性方程组无解,则输出 No solution
。
数据范围
1≤n≤100
输入样例:
3
1 1 0 1
0 1 1 0
1 0 0 1
输出样例:
1
0
0
2.算法思路
思路与上一题完全一致,唯一区别在于运算不同,全部变为异或运算
- 化为上三角矩阵的处理变成直接异或
- 化为对角矩阵的处理变成异或另外两项相乘
3.代码
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 110;
int n;
int a[N][N];
int gauss()
{
int c, r;
for (c = 0, r = 0; c < n; c ++ )
{
int t = r;
for (int i = r; i < n; i ++ )
if (a[i][c])
t = i;
if (!a[t][c]) continue;
for (int i = c; i <= n; i ++ ) swap(a[r][i], a[t][i]);
for (int i = r + 1; i < n; i ++ )
if (a[i][c])
for (int j = n; j >= c; j -- )
a[i][j] ^= a[r][j];
r ++ ;
}
if (r < n)
{
for (int i = r; i < n; i ++ )
if (a[i][n])
return 2;
return 1;
}
for (int i = n - 1; i >= 0; i -- )
for (int j = i + 1; j < n; j ++ )
a[i][n] ^= a[i][j] * a[j][n];
return 0;
}
int main()
{
cin >> n;
for (int i = 0; i < n; i ++ )
for (int j = 0; j < n + 1; j ++ )
cin >> a[i][j];
int t = gauss();
if (t == 0)
{
for (int i = 0; i < n; i ++ ) cout << a[i][n] << endl;
}
else if (t == 1) puts("Multiple sets of solutions");
else puts("No solution");
return 0;
}