数论 - 容斥原理

在计数时,必须注意没有重复,没有遗漏。为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。

一、题目描述

能被整除的数

给定一个整数 n 和 m 个不同的质数 p1,p2,…,pm。

请你求出 1∼n1 中能被 p1,p2,…,pm 中的至少一个数整除的整数有多少个。

输入格式

第一行包含整数 n 和 m。

第二行包含 m 个质数。

输出格式

输出一个整数,表示满足条件的整数的个数。

数据范围

1≤m≤16,
1≤n,pi≤109

输入样例:
10 2
2 3
输出样例:
7

二、算法思路

  1. 容斥原理公式:在这里插入图片描述

  2. 用二进制表示:上面容斥原理公式右边一共有2m-1项。所以我们可以用二进制表示每个约数是否存在,比如1则表示约数只有p1,1001则表示约数时p4*p1

  3. 通过一共2m-1项进行二进制遍历,计算出公式答案

  4. 细节在代码中阐释

三、代码

#include <iostream>
#include <algorithm>

using namespace std;

typedef long long LL;

const int N = 20;

int p[N];

int main()
{
    int n, m;
    cin >> n >> m;

    for (int i = 0; i < m; i ++ ) cin >> p[i];

    int res = 0; //答案
    for (int i = 1; i < 1 << m; i ++ ) //1 << m是2的m次方
    {
        int t = 1, s = 0; //t表示该二进制选择情况的约数,s表示该约数有多少个1
        for (int j = 0; j < m; j ++ )
            if (i >> j & 1)
            {
                if ((LL)t * p[j] > n) //约数大于被约束不成立
                {
                    t = -1;
                    break;
                }
                t *= p[j];
                s ++ ;
            }

        if (t != -1)
        {
	        //通过1个数来判断正负号
            if (s % 2) res += n / t;
            else res -= n / t;
        }
    }

    cout << res << endl;

    return 0;
}
<think>好的,我现在需要向用户介绍容斥原理公式。首先,我应该回忆一下容斥原理的基本概念和应用场景。容斥原理是组合数学中的一个重要原理,用于计算多个集合的并集大小,特别是当这些集合有重叠的时候。用户可能已经知道两个集合的情况,但需要扩展到更多集合的情况,或者想了解具体的公式表达。 首先,我应该从两个集合的简单情况开始,这是用户可能已经熟悉的。两个集合A和B的并集大小等于各自的大小之和减去它们的交集大小。公式是|A ∪ B| = |A| + |B| - |A ∩ B|。这一步需要清晰地写出公式,并用中文解释每个部分的含义。 接下来是三个集合的情况,这时候公式会更复杂一些。三个集合A、B、C的并集大小需要用到三个集合各自的大小,减去每两个集合的交集大小,再加上三个集合的交集大小。公式应该是|A ∪ B ∪ C| = |A| + |B| + |C| - |A∩B| - |A∩C| - |B∩C| + |A∩B∩C|。这里需要详细解释每一步的加减原因,避免用户混淆。 然后,我需要将公式推广到n个集合的一般情况。这时候需要使用求和符号和交替加减的方式来表示。一般来说,对于n个集合A₁到Aₙ,它们的并集大小是各个集合的大小之和,减去所有两个集合交集的大小之和,加上所有三个集合交集的大小之和,依此类推,直到加上或减去(-1)^{n+1}倍的n个集合的交集大小。数学表达式应该写成:|A₁ ∪ A₂ ∪ … ∪ Aₙ| = Σ|A_i| - Σ|A_i ∩ A_j| + Σ|A_i ∩ A_j ∩ A_k| - … + (-1)^{n+1}|A₁ ∩ A₂ ∩ … ∩ Aₙ|。这里需要确保符号的正确性,尤其是交替符号的变化。 接下来,我应该举一个具体的例子来帮助用户理解。比如,三个集合的情况,可以用学生选修课程的例子来说明。如果有学生选修数学、物理、化学三门课程,计算至少选修一门的人数,这时候就需要用到三个集合的容斥公式。给出具体的数字代入,展示如何应用公式计算。 同时,用户可能想知道容斥原理的应用场景,所以需要简要提到它在概率论、组合计数、排列组合问题中的应用,比如计算事件的概率,或者解决包含排除的计数问题。 在解释过程中,需要注意数学公式的正确格式,按照用户的要求,行内公式用$...$,独立公式用$$...$$并且单独成段。例如,两个集合的公式应该用行内格式,而三个集合和一般情况的公式可能需要独立成段,特别是当它们比较复杂的时候。需要检查LaTeX语法是否正确,避免出现格式错误。 此外,要确保语言简洁明了,结构清晰,分步骤解释,帮助用户逐步理解。可能用户对符号不太熟悉,需要解释每个符号的意义,比如Σ表示求和,下标i<j<k等表示不同的组合情况。同时,需要强调容斥原理的核心思想是通过交替加减来修正重复计算的部分,从而准确得到并集的大小。 最后,总结容斥原理的作用和重要性,强调它在处理交集问题时的有效性,以及如何通过系统的加减来避免重复或遗漏。确保用户不仅记住公式,还能理解其背后的逻辑和应用方法。</think>容斥原理是组合数学中的重要工具,用于计算多个集合的并集大小(或事件发生的总情况数),尤其适用于存在重叠的情况。其核心思想是通过交替加减交集的大小来修正重复计数。以下是逐步介绍: --- ### **1. 两个集合的情况** 若集合 $A$ 和 $B$ 有重叠部分,则它们的并集大小为: $$|A \cup B| = |A| + |B| - |A \cap B|$$ - **解释**:直接相加 $|A|+|B|$ 会重复计算 $A \cap B$,因此需减去一次交集大小。 --- ### **2. 三个集合的情况** 若集合 $A$、$B$、$C$ 两两相交甚至三者相交,则: $$ |A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C| $$ - **解释**: - 先加单个集合大小; - 减去两两交集(消除重复); - 最后加回三者交集(因其被减去了三次,需补回一次)。 --- ### **3. n 个集合的一般公式** 对 $n$ 个集合 $A_1, A_2, \dots, A_n$,它们的并集大小为: $$ \left| \bigcup_{i=1}^n A_i \right| = \sum_{i=1}^n |A_i| - \sum_{1 \leq i < j \leq n} |A_i \cap A_j| + \sum_{1 \leq i < j < k \leq n} |A_i \cap A_j \cap A_k| - \cdots + (-1)^{n+1} |A_1 \cap A_2 \cap \cdots \cap A_n| $$ - **符号含义**: - 第一项:所有单集合大小之和; - 第二项:所有两集合交集大小之和(带负号); - 第三项:所有三集合交集大小之和(带正号); - 依此类推,符号交替变化。 --- ### **4. 应用示例** **问题**:50 名学生选修数学、物理、化学三门课程。已知: - 选修数学:30 人 - 选修物理:25 人 - 选修化学:20 人 - 同时选修数学和物理:10 人 - 同时选修数学和化学:8 人 - 同时选修物理和化学:5 人 - 三门均选修:3 人 求**至少选修一门课程的学生数**。 **解答**: $$ \begin{align*} |M \cup P \cup C| &= 30 + 25 + 20 - 10 - 8 - 5 + 3 \\ &= 55 \text{ 人}. \end{align*} $$ --- ### **5. 核心思想** 容斥原理通过“逐步修正”重复计数: 1. **先加**:单集合大小; 2. **后减**:两两重复部分; 3. **再加**:三者重复部分(因其被减去了多次); 4. **依此类推**,直到覆盖所有可能的交集。 --- ### **6. 应用场景** - **概率论**:计算多个事件至少发生其一的概率。 - **计数问题**:如求满足至少一个条件的排列数。 - **数论**:计算满足某些整数性质的数的个数。 通过容斥原理,我们可以系统地处理复杂重叠问题,避免遗漏或重复计算。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值