题目:最左边的数字

 问题 - 1060 (hdu.edu.cn)


 解题思路:

数字很大,使用科学计数法。则n^{n}= a\cdot 10^{m},我们需要的是a的整数位,最终求出a即可。 

取对数:nlgn=m+lga,移项:lga=nlgn-m,接下来我们需要求m。                                               

设0<x<1,令a=10^x,则n^n=(10^x)*(10^m)=10^(x+m),再取对数:nlgn=x+m,移项:m=(nlgn)-m,因为m为整数,所以 m为nlgn的向下取整。所以a=10^{nlgn-\left \lfloor nlgn \right \rfloor}


AC代码:

#include<bits/stdc++.h>
using namespace std;
using ll = long long;

int main()
{
	int t;cin >> t;
	while(t--){
		int n;cin >> n;
		double x = n * log10(n);
		x -= (ll)x;  // ll可以x向下取整
		cout <<  (int)pow(10.0,x) << '\n';  
        // int使我们思路里需要的a保留整数位,即题目左边的数。
        // pow里10.0为避免错误,参数都是同类型则返回值相同类型		
	} 
	return 0;
 } 

知识点:

科学计数法                                                                             

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值