解题思路:
数字很大,使用科学计数法。则,我们需要的是a的整数位,最终求出a即可。
取对数:nlgn=m+lga,移项:lga=nlgn-m,接下来我们需要求m。
设0<x<1,令a=10^x,则n^n=(10^x)*(10^m)=10^(x+m),再取对数:nlgn=x+m,移项:m=(nlgn)-m,因为m为整数,所以 m为nlgn的向下取整。所以。
AC代码:
#include<bits/stdc++.h>
using namespace std;
using ll = long long;
int main()
{
int t;cin >> t;
while(t--){
int n;cin >> n;
double x = n * log10(n);
x -= (ll)x; // ll可以x向下取整
cout << (int)pow(10.0,x) << '\n';
// int使我们思路里需要的a保留整数位,即题目左边的数。
// pow里10.0为避免错误,参数都是同类型则返回值相同类型
}
return 0;
}
知识点:
科学计数法