利用MATLAB验证因果有始信号卷积的性质

因果有始信号的卷积结果具有非常鲜明的性质,也是我们在信号与系统课程中需要记忆的重要结论,为了加深自己的印象和与大家交流互鉴,我在这里做一个简单的陈述,并尝试利用MATLAB画图直观地展现结果。

公式

连续函数:

x_1(t)u(t-t_1)\ast x_2(t)u(t-t_2)=\{\int_{t_1}^{t-t_2}x_1(\tau)x_2(t-\tau)d\tau\}u(t-t_1-t_2)

离散函数:

x_1[n]u[n-n_1]\ast x_2[n]u[n-n_2]=\{\sum_{\tau=n_1}^{n-n_2}x_1[\tau]x_2[n-\tau]\}u[n-n_1-n_2]

阶跃函数卷积

不妨取信号1为u(t-4),信号2为u(t-6),公式推导:

u(t-4)\ast u(t-6)=\{\int_{4}^{t-6}d\tau\}u(t-4-6)=(t-10)u(t-10)

代码

t = -20:0.01:20;
f_1 = heaviside(t-4);
f_2 = heaviside(t-6);
f_3 = conv(f_1, f_2, 'same');
plot(t, f_3);

其中heaviside函数用来生成阶跃函数,这里不在赘述。

图样

不难发现与理论情况相符,即验证。至于倍数放大的“异常”情况的原因,我在另一篇文章里有简要叙述。

MATLAB卷积函数conv的运算原理对信号幅值的影响

矩形信号的卷积

不妨取信号1为u(t+3)-u(t+1),信号2为u(t-1)-u(t-3),公式推导:

f(t)=[u(t+3)-u(t+1)]\ast[u(t-1)-u(t-3)]=\{\int_{-3}^{t-1}1d\tau\}u(t-1+3)-\{\int_{-3}^{t-3}1d\tau\}u(t-3+3)-\{\int_{-1}^{t-1}1d\tau\}u(t-1+1)+\{\int_{-1}^{t-3}1d\tau\}u(t-3+1)=(t+2)u(t+2)-tu(t)-tu(t)+(t-2)u(t-2)=(t+2)u(t+2)-2tu(t)+(t-2)u(t-2)

结果即为:

f(t)=(t+2)u(t+2)-2tu(t)+(t-2)u(t-2)

化为分段函数:

f(t)=\left\{ \begin{array}{rr} 0 & t<2 \\ t+2 & -2\leq t \leq 0 \\ -t+2 & 0\leq t \leq 2 \\ 0 & t>2 \\ \end{array} \right .

代码

t = -20:0.01:20;
f_1 = heaviside(t-1)-heaviside(t-3);
f_2 = heaviside(t+3)-heaviside(t+1);
f_3 = conv(f_1, f_2, 'same');
plot(t, f_3);

图样

其中关于幅值问题的讨论同上一部分。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值