电容(capacitor)是一种非常重要的电路元件,从它存储电荷的特性出发,我们可以得到一系列很有意义的功能与规律。所以通过研究RC充放电电路来加深对于电容特性的了解,具有很显著的意义。
电路图
在cadence17.4中绘制如下:
推导
列写电路方程,有:
考虑电容的特性与
关系,代入方程整理,有:
分别对于电路的零状态响应与零输入响应,有:
其中,它具有时间的量纲,称为电路的时间常数。它的大小反映了电路充放电的快慢,其值越大,对应的充放电过程越缓慢。
更一般的,如果考虑全响应的情况,利用三要素法可以得到:
仿真
当电阻大小为5000欧姆,电容大小为0.1微法,即
当电阻大小为10000欧姆,电容大小为0.1微法,即
不发现以上都是方波宽度远大于时间常数的情况,这时候在经过一个周期后有,电路状态依然可以看作是零状态响应。但是如果时间常数较大,电容充电缓慢,在经过最初的零状态响应后有明显的
,那么则会影响接下来电容放电的速度,从而导致在经过一个周期后有
,电路状态不能再看作是零状态响应了!但是在若干个周期之后,电路也能够进入一个稳态周期响应,此时的最高电压
和最低电压
可以通过充放电过程的三要素法联立求解:
考虑,有:
下面进行验证,当电阻大小为50000欧姆,电容大小为0.1微法,即
可见理论推导与仿真结果相符。