RC电路充放电电路规律的推导与仿真(方波响应)

电容(capacitor)是一种非常重要的电路元件,从它存储电荷的特性出发,我们可以得到一系列很有意义的功能与规律。所以通过研究RC充放电电路来加深对于电容特性的了解,具有很显著的意义。

电路图

在cadence17.4中绘制如下:

推导

列写电路方程,有:

iR+V_c=\varepsilon

考虑电容的q-u特性与u-i关系,代入方程整理,有:

\frac{dV_c}{dt}+\frac{1}{RC}V_c=\frac{1}{RC}\varepsilon

分别对于电路的零状态响应零输入响应,有:

V_c(t)=\left\{ \begin{array}{rr} E(1-e^{-\frac{t}{RC}}) & \varepsilon =E \\ V_c(0)e^{-\frac{t}{RC}} & \varepsilon =0 \\ \end{array} \right .

其中\tau = RC,它具有时间的量纲,称为电路的时间常数。它的大小反映了电路充放电的快慢,其值越大,对应的充放电过程越缓慢

更一般的,如果考虑全响应的情况,利用三要素法可以得到:

y(t)=y(\infty)+[y(0_{+})-y(\infty)]e^{-\frac{t}{\tau }}

仿真

当电阻大小为5000欧姆,电容大小为0.1微法,即\tau = 0.5ms

当电阻大小为10000欧姆,电容大小为0.1微法,即\tau = 1ms

不发现以上都是方波宽度远大于时间常数的情况,这时候在经过一个周期后有V_c=0电路状态依然可以看作是零状态响应。但是如果时间常数较大,电容充电缓慢,在经过最初的零状态响应后有明显的V_c<E,那么则会影响接下来电容放电的速度,从而导致在经过一个周期后有V_c\neq 0电路状态不能再看作是零状态响应了但是在若干个周期之后,电路也能够进入一个稳态周期响应,此时的最高电压U_2和最低电压U_1可以通过充放电过程的三要素法联立求解

\left\{\begin{matrix} U_2=E+(U_1-E)e^{-\frac{t}{\tau}} \\ U_1=0+(U_2-0)e^{-\frac{t}{\tau}} \end{matrix}\right.

考虑a=e^{-\frac{t}{\tau}},有:

\left\{\begin{matrix} U_2=\frac{1}{1+a}E\\ U_1=\frac{a}{1+a}E \end{matrix}\right.

下面进行验证,当电阻大小为50000欧姆,电容大小为0.1微法,即\tau = 5ms

可见理论推导与仿真结果相符。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值