光计算中MZI的两种结构的传递矩阵与功能分析

MZI(马赫-曾德尔干涉仪,Mach–Zehnder interferometers)光计算中发挥着非常重要的作用,利用它可以完成光子的矩阵运算,基于其中相移器(phase shifter)所处的位置,MZI可以分为对称与非对称两种,本文对于这两种MZI的传递矩阵与功能进行大致的分析,以便于自己和大家在光计算领域之后的学习。

传递矩阵

考虑两个MMI为对称结构,即分光比均为50:50。

非对称MZI

考虑两个个相移器相移依次为\varphi_1,\varphi_2,那么对于此时的传递矩阵M_1,有:

M_1=\begin{bmatrix} e^{i\varphi_2} & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}i \\ \frac{\sqrt{2}}{2}i & \frac{\sqrt{2}}{2} \end{bmatrix} \begin{bmatrix} e^{i\varphi_1} & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}i \\ \frac{\sqrt{2}}{2}i & \frac{\sqrt{2}}{2} \end{bmatrix}

对式子进行化简,可以得到:

M_1=ie^{i\frac{\varphi_1}{2}}\begin{bmatrix} e^{i\varphi_2}sin(\frac{\varphi_1}{2}) & e^{i\varphi_2}cos(\frac{\varphi_1}{2}) \\ cos(\frac{\varphi_1}{2}) & -sin(\frac{\varphi_1}{2}) \end{bmatrix}

如果考虑\theta=\frac{\varphi_1}{2}-\frac{\pi}{2},那么可以进一步得到:

M_{\alpha}=ie^{i\frac{\varphi_1}{2}}\begin{bmatrix} e^{i\varphi_2}cos\theta & -e^{i\varphi_2}sin\theta \\ -sin\theta & -cos\theta \end{bmatrix}

对称MZI

同理对于此时的传递矩阵M_2来说,有:

M_2=\begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}i \\ \frac{\sqrt{2}}{2}i & \frac{\sqrt{2}}{2} \end{bmatrix} \begin{bmatrix} e^{i\varphi_1} & 0 \\ 0 & e^{i\varphi_2} \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}i \\ \frac{\sqrt{2}}{2}i & \frac{\sqrt{2}}{2} \end{bmatrix}

对式子进行化简,可以得到:

M_2=\begin{bmatrix} \frac{1}{2}(e^{i\varphi_1}-e^{i\varphi_2}) & \frac{1}{2}i(e^{i\varphi_1}+e^{i\varphi_2}) \\ \frac{1}{2}i(e^{i\varphi_1}+e^{i\varphi_2}) & \frac{1}{2}(e^{i\varphi_2}-e^{i\varphi_1}) \end{bmatrix}

如果考虑\varphi_A=\frac{\varphi1+\varphi2}{2},\varphi_D=\frac{\varphi1-\varphi2}{2},并且进行相应的欧拉变换,最终可以得到:

M_2=ie^{\varphi_Ai}\begin{bmatrix} sin\varphi_D & cos\varphi_D \\ cos\varphi_D & -sin\varphi_D \end{bmatrix}

功能分析

首先,我们不难发现,两种结构的MZI对应的传递矩阵的列向量组都可以构成一个标准正交向量集,即它们都是酉矩阵

这里的功能主要考虑它们在构成任意酉矩阵中的作用,即对任意酉矩阵进行消元操作。我们知道,在矩阵消元时,执行消元的矩阵如果左乘在目标矩阵上,那么它对应着行消元;反之右乘则对应着列消元所以对于对称结构的MZI来说,它只能执行特定情况下的行列消元,即目标矩阵对应两行(列)上的元素相位差为0或者π;而对于非对称结构的MZI来说,它只能执行特定情况下的行消元(原因相同),但是可以执行任意情况下的列消元(相移\varphi_2可以配置)

结语

本人纯小白,如有错误还请大家不吝指正,谢谢。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值