MZI(马赫-曾德尔干涉仪,Mach–Zehnder interferometers)在光计算中发挥着非常重要的作用,利用它可以完成光子的矩阵运算,基于其中相移器(phase shifter)所处的位置,MZI可以分为对称与非对称两种,本文对于这两种MZI的传递矩阵与功能进行大致的分析,以便于自己和大家在光计算领域之后的学习。
传递矩阵
考虑两个MMI为对称结构,即分光比均为50:50。
非对称MZI
考虑两个个相移器相移依次为,那么对于此时的传递矩阵
,有:
对式子进行化简,可以得到:
如果考虑,那么可以进一步得到:
对称MZI
同理对于此时的传递矩阵来说,有:
对式子进行化简,可以得到:
如果考虑,并且进行相应的欧拉变换,最终可以得到:
功能分析
首先,我们不难发现,两种结构的MZI对应的传递矩阵的列向量组都可以构成一个标准正交向量集,即它们都是酉矩阵。
这里的功能主要考虑它们在构成任意酉矩阵中的作用,即对任意酉矩阵进行消元操作。我们知道,在矩阵消元时,执行消元的矩阵如果左乘在目标矩阵上,那么它对应着行消元;反之右乘则对应着列消元。所以对于对称结构的MZI来说,它只能执行特定情况下的行列消元,即目标矩阵对应两行(列)上的元素相位差为0或者π;而对于非对称结构的MZI来说,它只能执行特定情况下的行消元(原因相同),但是可以执行任意情况下的列消元(相移可以配置)。
结语
本人纯小白,如有错误还请大家不吝指正,谢谢。